The “phase function” method to solve second-order asymptotically polynomial differential equations

被引:0
|
作者
Renato Spigler
Marco Vianello
机构
[1] Università “Roma Tre”,Dipartimento di Matematica
[2] Università di Padova,Dipartimento di Matematica
来源
Numerische Mathematik | 2012年 / 121卷
关键词
Primary: 65L99; 34E20; Secondary: 65D20;
D O I
暂无
中图分类号
学科分类号
摘要
The Liouville-Green (WKB) asymptotic theory is used along with the Borůvka’s transformation theory, to obtain asymptotic approximations of “phase functions” for second-order linear differential equations, whose coefficients are asymptotically polynomial. An efficient numerical method to compute zeros of solutions or even the solutions themselves in such highly oscillatory problems is then derived. Numerical examples, where symbolic manipulations are also used, are provided to illustrate the performance of the method.
引用
收藏
页码:565 / 586
页数:21
相关论文
共 50 条
  • [21] SECOND-ORDER PROCESS FOR SOLVING POLYNOMIAL EQUATIONS
    SEN, SK
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 1972, 53 (02): : 169 - &
  • [22] Index theory and multiple solutions for asymptotically linear second-order delay differential equations
    Yuan Shan
    Boundary Value Problems, 2023
  • [23] Index theory and multiple solutions for asymptotically linear second-order delay differential equations
    Shan, Yuan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [24] Bivariate second-order linear partial differential equations and orthogonal polynomial solutions
    Area, I.
    Godoy, E.
    Ronveaux, A.
    Zarzo, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (02) : 1188 - 1208
  • [25] Physical applications of second-order linear differential equations that admit polynomial solutions
    Ciftci, Hakan
    Hall, Richard L.
    Saad, Nasser
    Dogu, Ebubekir
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (41)
  • [26] ASYMPTOTICALLY ALMOST PERIODIC SOLUTIONS TO SOME CLASSES OF SECOND-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS
    Diagana, Toka
    Henriquez, Hernan
    Hernandez, Eduardo
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (5-6) : 575 - 600
  • [27] On the Solutions of Second-Order Differential Equations with Polynomial Coefficients: Theory, Algorithm, Application
    Bryenton, Kyle R.
    Cameron, Andrew R.
    Kirk, Keegan L. A.
    Saad, Nasser
    Strongman, Patrick
    Volodin, Nikita
    ALGORITHMS, 2020, 13 (11) : 1 - 22
  • [28] COMPATIBILITY ASPECTS OF THE METHOD OF PHASE SYNCHRONIZATION FOR DECOUPLING LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS
    Sarlet, Willy
    Mestdag, Tom
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (01): : 91 - 104
  • [29] An Analytical Method for Solving Second-order Fuzzy Differential Equations
    Qahremani, E.
    Allahviranloo, T.
    Abbasbandy, S.
    Ahmady, N.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (04)
  • [30] Oscillation of second-order differential equations
    Ohriska, Jan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 82 (01): : 11 - 20