Spatial differentiation of the NPP and NDVI and its influencing factors vary with grassland type on the Qinghai-Tibet Plateau

被引:0
|
作者
Yixuan Liu
Shiliang Liu
Yongxiu Sun
Mingqi Li
Yi An
Fangning Shi
机构
[1] Beijing Normal University,School of Environment
来源
关键词
Vegetation; Interaction relationship; Spatial heterogeneity effect; Geographically weighted regression;
D O I
暂无
中图分类号
学科分类号
摘要
Grasslands are the dominant ecosystem of the Qinghai-Tibet Plateau (QTP), and they play an important role in climate regulation and represent an important ecological barrier in China. However, the spatial differentiation characteristics of net primary productivity (NPP) and normalized differential vegetation index (NDVI) and the main influencing factors that vary with grassland type on the QTP are not clear. In this study, standardized precipitation evapotranspiration index (SPEI), digital elevation model (DEM), precipitation, temperature, slope, photosynthetically active radiation (PAR) and grazing intensity were considered the driving factors. First, a grey relational degree analysis was performed to test for the quantitative relationships between NPP, NDVI and factors. Then, the geographical detector method was applied to analyze the interaction relationships of the factors. Finally, based on the geographically weighted regression (GWR) model, the influence of factors varied with grassland type on the NPP and NDVI was revealed from the perspective of spatial differentiation. The results were as follows: (1) The NPP and NDVI had roughly the same degrees of correlation with each impact factor by the grey relational degree analysis, each factor was closely related to the NPP and NDVI, and the relational degree between grazing intensity and NPP was greater than that between grazing intensity and NDVI. (2) The interaction relationships between influencing factors and NPP and NDVI varied with the grassland type and presented bivariate enhancement and nonlinear enhancement, and the interaction effects between grazing intensity and any factor on each grassland type had a greater impact on NPP. (3) The main influencing factors of the spatial heterogeneity of NPP were grazing intensity and PAR, which were “high from northeast to southwest, low from northwest to southeast” and “low in the middle and high around”. The main influencing factors on the NDVI were precipitation and PAR, which were “low in the middle and high around” and “high in the north, low in the south”.
引用
收藏
相关论文
共 50 条
  • [21] Factors influencing thermokarst lake development in Beiluhe basin, the Qinghai-Tibet Plateau
    Wang, Huini
    Liu, Hongjia
    Ni, Wankui
    ENVIRONMENTAL EARTH SCIENCES, 2017, 76 (24)
  • [22] Identification of the Factors Influencing the Baseflow in the Permafrost Region of the Northeastern Qinghai-Tibet Plateau
    Qin, Jia
    Ding, Yongjian
    Han, Tianding
    Liu, Yuexia
    WATER, 2017, 9 (09)
  • [23] Appropriated protection time and region for Qinghai-Tibet Plateau grassland
    Qian, Shuan
    Pan, Feifei
    Wu, Menxin
    Sun, Yinglong
    OPEN GEOSCIENCES, 2022, 14 (01) : 706 - 716
  • [24] Impacts of Climate Change and Human Activities on NDVI in the Qinghai-Tibet Plateau
    Sun, Lu
    Li, Hao
    Wang, Jia
    Chen, Yuhan
    Xiong, Nina
    Wang, Zong
    Wang, Jing
    Xu, Jiangqi
    REMOTE SENSING, 2023, 15 (03)
  • [25] Spatiotemporal variations of water conservation and its influencing factors in ecological barrier region, Qinghai-Tibet Plateau
    Xue, Jian
    Li, Zongxing
    Feng, Qi
    Gui, Juan
    Zhang, Baijuan
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2022, 42
  • [26] Soil Texture and Its Relationship with Environmental Factors on the Qinghai-Tibet Plateau
    Liu, Yadong
    Wu, Xiaodong
    Wu, Tonghua
    Zhao, Lin
    Li, Ren
    Li, Wangping
    Hu, Guojie
    Zou, Defu
    Ni, Jie
    Du, Yizhen
    Wang, Mengjuan
    Li, Zhihong
    Wei, Xianhua
    Yan, Xuchun
    REMOTE SENSING, 2022, 14 (15)
  • [27] Spatial-Temporal Evolution and Influencing Mechanism of Traffic Dominance in Qinghai-Tibet Plateau
    Wang, Dongchuan
    Wang, Kangjian
    Wang, Zhiheng
    Fan, Hongkui
    Chai, Hua
    Wang, Hongyi
    Long, Hui
    Gao, Jianshe
    Xu, Jiacheng
    SUSTAINABILITY, 2022, 14 (17)
  • [28] Spatial analysis of air temperature in the Qinghai-Tibet Plateau
    Li, X
    Cheng, GD
    Lu, L
    ARCTIC ANTARCTIC AND ALPINE RESEARCH, 2005, 37 (02) : 246 - 252
  • [29] Spatial gathering characteristics of drought in the Qinghai-Tibet Plateau
    Yuan, Ning
    Feng, Yuqing
    Liang, Sihai
    Wang, Guangjun
    Yin, Tao
    Yan, Dezhao
    Wu, Pan
    Kuang, Xingxing
    Wan, Li
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [30] Temporal and spatial characteristics of the ionosphere in the Qinghai-Tibet Plateau
    Tian, Xiangyu
    Chai, Hongzhou
    Yin, Xiao
    Wang, Min
    Chong, Yang
    Guo, Yunfei
    ADVANCES IN SPACE RESEARCH, 2021, 68 (01) : 225 - 235