An Artificial Neural Network Test for Structural Change with Unspecified Parametric Form

被引:0
|
作者
Yoshihisa Suzuki
机构
[1] Hiroshima University,
来源
关键词
C12; C14; C45;
D O I
暂无
中图分类号
学科分类号
摘要
Tests for a structural change of unknown timing in parameterized regression functions have been introduced previously under the maintained assumption that the models are correctly specified. However, the existing family of tests are unable to discriminate between structural change and misspecification. This paper introduces test statistics which do not require specification of the parametric form of the underlying data-generating process (DGP). I approximate it by a version of artificial neural networks (ANN). My simulation studies indicate that an ANN approximates the DGP quite well and that the derived tests have good power relative to the power envelope.
引用
收藏
页码:339 / 365
页数:26
相关论文
共 50 条
  • [31] APPLICATION OF AN ARTIFICIAL NEURAL-NETWORK AS A FLIGHT TEST DATA ESTIMATOR
    MCMILLEN, RL
    STECK, JE
    ROKHSAZ, K
    [J]. JOURNAL OF AIRCRAFT, 1995, 32 (05): : 1088 - 1094
  • [32] Signal change detection in sensor networks with artificial neural network structure
    Reznik, L
    Von Pless, G
    Al Karim, T
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR HOMELAND SECURITY AND PERSONAL SAFETY, 2005, : 44 - 51
  • [33] Change point detection with multivariate control charts by artificial neural network
    Ahmadzadeh, Farzaneh
    [J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 97 (9-12): : 3179 - 3190
  • [34] Change point detection with multivariate control charts by artificial neural network
    Farzaneh Ahmadzadeh
    [J]. The International Journal of Advanced Manufacturing Technology, 2018, 97 : 3179 - 3190
  • [35] A finite-element-informed neural network for parametric simulation in structural mechanics
    Le-Duc, Thang
    Nguyen-Xuan, H.
    Lee, Jaehong
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 217
  • [36] Total tree height predictions via parametric and artificial neural network modeling approaches
    Karatepe, Yasin
    Diamantopoulou, Maria J.
    Ozcelik, Ramazan
    Surucu, Zerrin
    [J]. IFOREST-BIOGEOSCIENCES AND FORESTRY, 2022, 15 : 95 - 105
  • [37] A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    Srivastav, R. K.
    Sudheer, K. P.
    Chaubey, I.
    [J]. WATER RESOURCES RESEARCH, 2007, 43 (10)
  • [38] Hybrid artificial neural network and structural equation modelling techniques: a survey
    Albahri, A. S.
    Alnoor, Alhamzah
    Zaidan, A. A.
    Albahri, O. S.
    Hameed, Hamsa
    Zaidan, B. B.
    Peh, S. S.
    Zain, A. B.
    Siraj, S. B.
    Masnan, A. H. B.
    Yass, A. A.
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2022, 8 (02) : 1781 - 1801
  • [39] Hybrid artificial neural network and structural equation modelling techniques: a survey
    A. S. Albahri
    Alhamzah Alnoor
    A. A. Zaidan
    O. S. Albahri
    Hamsa Hameed
    B. B. Zaidan
    S. S. Peh
    A. B. Zain
    S. B. Siraj
    A. H. B. Masnan
    A. A. Yass
    [J]. Complex & Intelligent Systems, 2022, 8 : 1781 - 1801
  • [40] Reinforced concrete structural damage diagnosis by using artificial neural network
    Hsu, DS
    Tsai, CH
    [J]. INTELLIGENT INFORMATION SYSTEMS, (IIS'97) PROCEEDINGS, 1997, : 149 - 155