Piecewise parabolic negative magnetoresistance of two-dimensional electron gas with triangular antidot lattice

被引:0
|
作者
M. V. Budantsev
R. A. Lavrov
A. G. Pogosov
E. Yu. Zhdanov
D. A. Pokhabov
机构
[1] Russian Academy of Sciences,Rzhanov Institute of Semiconductor Physics, Siberian Branch
[2] Novosibirsk State University,undefined
来源
Semiconductors | 2011年 / 45卷
关键词
Magnetic Field; Transport Mode; Weak Magnetic Field; Critical Magnetic Field; Parabolic Dependence;
D O I
暂无
中图分类号
学科分类号
摘要
Extraordinary piecewise parabolic behavior of the magnetoresistance has been experimentally detected in the two-dimensional electron gas with a dense triangular lattice of antidots, where commensurability magnetoresistance oscillations are suppressed. The magnetic field range of 0–0.6 T can be divided into three wide regions, in each of which the magnetoresistance is described by parabolic dependences with high accuracy (comparable to the experimental accuracy) and the transition regions between adjacent regions are much narrower than the regions themselves. In the region corresponding to the weakest magnetic fields, the parabolic behavior becomes almost linear. The observed behavior is reproducible as the electron gas density changes, which results in a change in the resistance by more than an order of magnitude. Possible physical mechanisms responsible for the observed behavior, including so-called “memory effects,” are discussed.
引用
收藏
页码:203 / 207
页数:4
相关论文
共 50 条
  • [21] Negative magnetoresistance of a high-mobility two-dimensional electron gas in a nonlinear regime
    A. A. Bykov
    A. K. Kalagin
    A. K. Bakarov
    Journal of Experimental and Theoretical Physics Letters, 2005, 81 : 406 - 408
  • [22] Magnetoresistance oscillations in a dimpled two-dimensional electron gas
    Gusev, GM
    Gennser, U
    Kleber, X
    Maude, DK
    Portal, JC
    Lubyshev, DI
    Basmaji, P
    Silva, MDPA
    Rossi, JC
    Nastaushev, YV
    SURFACE SCIENCE, 1996, 361 (1-3) : 855 - 859
  • [23] Negative magnetoresistance of a high-mobility two-dimensional electron gas in a nonlinear regime
    Bykov, AA
    Kalagin, AK
    Bakarov, AK
    JETP LETTERS, 2005, 81 (08) : 406 - 408
  • [24] Magnetoresistance of a lateral contact to a two-dimensional electron gas
    Uhlisch, D
    Kupriyanov, MY
    Golubov, AA
    Appenzeller, J
    Klocke, T
    Neurohr, K
    Ustinov, AV
    Braginski, AI
    PHYSICA B-CONDENSED MATTER, 1996, 225 (3-4) : 197 - 201
  • [25] CLASSICAL MAGNETORESISTANCE OF A TWO-DIMENSIONAL ELECTRON-GAS IN A ONE-DIMENSIONAL SUPER-LATTICE
    GUSEV, GM
    KVON, ZD
    OVSYUK, VN
    JETP LETTERS, 1983, 37 (04) : 210 - 212
  • [26] Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices
    Li, Yun-Mei
    Zhou, Xiaoying
    Zhang, Yan-Yang
    Zhang, Dong
    Chang, Kai
    PHYSICAL REVIEW B, 2017, 96 (03)
  • [27] Negative transverse magnetoresistance of the two-dimensional electron gas in quantum well with parabolic confinement potential under an in-plane magnetic field
    Nizametdinova, M. A.
    Hashimzade, F. M.
    Hasanov, Kh A.
    Babayev, M. M.
    Mehdiyev, B. H.
    QUANTUM DOTS 2010, 2010, 245
  • [28] Ballistic magnetotransport in a suspended two-dimensional electron gas with periodic antidot lattices
    E. Yu. Zhdanov
    A. G. Pogosov
    M. V. Budantsev
    D. A. Pokhabov
    A. K. Bakarov
    Semiconductors, 2017, 51 : 8 - 13
  • [29] Magnetoresistance of a two-dimensional electron gas in random magnetic fields
    Hansen, LT
    Taboryski, R
    Smith, A
    Lindelof, PE
    Hedegard, P
    SURFACE SCIENCE, 1996, 361 (1-3) : 349 - 352
  • [30] Magnetoresistance and dephasing in a two-dimensional electron gas at intermediate conductances
    Minkov, GM
    Germanenko, AV
    Gornyi, IV
    PHYSICAL REVIEW B, 2004, 70 (24) : 1 - 24