Frobenius and homological dimensions of complexes

被引:0
|
作者
Taran Funk
Thomas Marley
机构
[1] University of Nebraska-Lincoln,
来源
Collectanea Mathematica | 2020年 / 71卷
关键词
Frobenius endomorphism; Flat dimension; Injective dimension; Complete intersection; 13D05; 13D07; 13A35;
D O I
暂无
中图分类号
学科分类号
摘要
It is proved that a module M over a Noetherian local ring R of prime characteristic and positive dimension has finite flat dimension if ToriR(eR,M)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Tor}}_i^R({}^{e}\!R, M)=0$$\end{document} for dimR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {dim}}\,R$$\end{document} consecutive positive values of i and infinitely many e. Here eR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^{e}\!R$$\end{document} denotes the ring R viewed as an R-module via the eth iteration of the Frobenius endomorphism. In the case R is Cohen–Macualay, it suffices that the Tor vanishing above holds for a single e⩾logpe(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e\geqslant \log _p e(R)$$\end{document}, where e(R) is the multiplicity of the ring. This improves a result of Dailey et al. (J Commut Algebra), as well as generalizing a theorem due to Miller (Contemp Math 331:207–234, 2003) from finitely generated modules to arbitrary modules. We also show that if R is a complete intersection ring then the vanishing of ToriR(eR,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text {Tor}}_i^R({}^{e}\!R, M)$$\end{document} for single positive values of i and e is sufficient to imply M has finite flat dimension. This extends a result of Avramov and Miller (Math Res Lett 8(1–2):225–232, 2001).
引用
收藏
页码:287 / 297
页数:10
相关论文
共 50 条
  • [31] Homological dimensions of semigroup rings
    Kuzmanovich, J
    Teply, ML
    [J]. COMMUNICATIONS IN ALGEBRA, 1997, 25 (09) : 2817 - 2837
  • [32] On Gorenstein Homological Dimensions of Groups
    Yueming XIANG
    [J]. Journal of Mathematical Research with Applications, 2023, 43 (02) : 191 - 203
  • [33] Homological dimensions of rigid modules
    Zargar, Majid Rahro
    Celikbas, Olgur
    Gheibi, Mohsen
    Sadeghi, Arash
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2018, 58 (03) : 639 - 669
  • [34] ALGEBRAS WITH LARGE HOMOLOGICAL DIMENSIONS
    KIRKMAN, E
    KUZMANOVICH, J
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) : 903 - 906
  • [35] Homological dimensions of Banach spaces
    Sanchez, F. Cabello
    Castillo, J. M. F.
    Garcia, R.
    [J]. SBORNIK MATHEMATICS, 2021, 212 (04) : 531 - 550
  • [36] Bounds for the homological dimensions of pullbacks
    Kosmatov N.V.
    [J]. Journal of Mathematical Sciences, 2002, 112 (4) : 4367 - 4370
  • [37] TORSION THEORIES AND HOMOLOGICAL DIMENSIONS
    BICAN, L
    KEPKA, T
    NEMEC, P
    [J]. JOURNAL OF ALGEBRA, 1975, 35 (1-3) : 99 - 122
  • [38] Algebras with small homological dimensions
    Coelho, FU
    Lanzilotta, MA
    [J]. MANUSCRIPTA MATHEMATICA, 1999, 100 (01) : 1 - 11
  • [39] HOMOLOGICAL DIMENSIONS AND MACAULAY RINGS
    LEVIN, G
    VASCONCE.WV
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1968, 25 (02) : 315 - &
  • [40] HOMOLOGICAL DIMENSIONS OF RING SPECTRA
    Hovey, Mark
    Lockridge, Keir
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2013, 15 (02) : 53 - 71