The Singularity Spectrum f(α) of Some Moran Fractals

被引:0
|
作者
Min Wu
机构
[1] South China University of Technology and Chinese Academy of Sciences,
来源
关键词
2000 Mathematics Subject Classification: 28A78, 28A80, 37F50; Key words: Singularity spectrum, multifractal decomposition, Moran fractal;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the multifractal decomposition behaves as expected for a family of sets E known as homogeneous Moran fractals associated with the Fibonacci sequence ω, using probability measures μ(ω) associated with the Fibonacci sequence ω. For each value of a parameter α∈ (αmin, αmax), we define ‘multifractal components’ Eα of E, and show that they are fractals in the sense of Taylor. We give the explicit formula for the dimension of Eα. Also our method can be used for the Moran fractals associated with some more general sequences.
引用
收藏
页码:141 / 155
页数:14
相关论文
共 50 条
  • [41] SOME SURFACE EFFECTS IN POROUS FRACTALS
    BROCHARD, F
    JOURNAL DE PHYSIQUE, 1985, 46 (12): : 2117 - 2123
  • [42] Some applications of Besov spaces on fractals
    Yang, DC
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (05) : 1209 - 1218
  • [43] EQUATIONS AND INTERVAL COMPUTATIONS FOR SOME FRACTALS
    Fang, Lincong
    Michelucci, Dominique
    Foufou, Sebti
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (04)
  • [44] Some dimensional results for homogeneous Moran sets
    Dejun Feng
    Zhiying Wen
    Jun Wu
    Science in China Series A: Mathematics, 1997, 40 : 475 - 482
  • [45] Some Applications of Besov Spaces on Fractals
    Da Chun Yang
    Acta Mathematica Sinica, 2005, 21 : 1209 - 1218
  • [46] Some dimensional results for homogeneous Moran sets
    丰德军
    文志英
    吴军
    ScienceinChina,SerA., 1997, Ser.A.1997 (05) : 475 - 482
  • [47] LOWER TYPE DIMENSIONS OF SOME MORAN SETS
    Yang, Jiaojiao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2019, 27 (05)
  • [48] Some dimensional results for homogeneous Moran sets
    Feng, DJ
    Wen, ZY
    Wu, J
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (05): : 475 - 482
  • [49] CRITICAL-BEHAVIOR ON SOME FRACTALS
    ZIDAN, W
    GONG, CD
    HOLZ, A
    PHYSICAL REVIEW A, 1986, 34 (02): : 1531 - 1537
  • [50] The existence of Fourier basis for some Moran measures
    Yin, Feng-Li
    Zhu, Meng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 459 (01) : 590 - 603