Effects of an imposed axial flow on a Ferrofluidic Taylor-Couette flow

被引:0
|
作者
Sebastian Altmeyer
Younghae Do
机构
[1] Universitat Politècnica de Catalunya,Castelldefels School of Telecom and Aerospace Engineering
[2] Kyungpook National University,Department of Mathematics, KNU
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate the effects of an externally imposed axial mass flux (axial pressure gradient, axial through flow) on ferrofluidic Taylor-Couette flow under the influence of either an axial or a transverse magnetic field. Without an imposed axial through flow, due to the symmetry-conserving axial field and the symmetry-breaking transverse field, it gives rise to various vortex flows in ferrofluidic Taylor-Couette flow such as wavy Taylor vortex flow (wTVF), wavy spiral vortex flow (wSPI) and wavy vortex flows (wTVFHx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{wTV}}{{\boldsymbol{F}}}_{{{\boldsymbol{H}}}_{{\boldsymbol{x}}}}$$\end{document} and wSPIHx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\boldsymbol{wSP}}{{\boldsymbol{I}}}_{{{\boldsymbol{H}}}_{{\boldsymbol{x}}}}$$\end{document}), which are typically produced by a nonlinear interaction of rotational, shear and magnetic instabilities. In addition, when an axial through flow is imposed to a ferrofluidic Taylor-Couette flow in the presence of either an axial or a transverse magnetic field, previously unknown new helical vortex structures are observed. In particular, we uncover ‘modulated Mixed-Cross-Spirals’ with a combination of at least three different dominant azimuthal wavenumbers. Emergence of such new flow states indicates richer but potentially more controllable dynamics in ferrofluidic flows, i.e., an imposed axial through flow will be a new controllable factor/parameter in applications of a ferrofluidic and magnetic flows flow.
引用
收藏
相关论文
共 50 条
  • [41] Mixing and axial dispersion in Taylor-Couette flows: The effect of the flow regime
    Nemri, Marouan
    Charton, Sophie
    Climent, Eric
    [J]. CHEMICAL ENGINEERING SCIENCE, 2016, 139 : 109 - 124
  • [42] Taylor-Couette flow for astrophysical purposes
    Ji, H.
    Goodman, J.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2246):
  • [43] Routes to turbulence in Taylor-Couette flow
    Feldmann, Daniel
    Borrero-Echeverry, Daniel
    Burin, Michael J. J.
    Avila, Kerstin
    Avila, Marc
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2246):
  • [44] Torque scaling in Taylor-Couette flow
    Eckhardt, Bruno
    Grossmann, Siegfried
    Lohse, Detlef
    [J]. ADVANCES IN TURBULENCE XI, 2007, 117 : 352 - +
  • [45] Optimum photolysis in Taylor-Couette flow
    Forney, LJ
    Pierson, JA
    [J]. AICHE JOURNAL, 2003, 49 (03) : 727 - 733
  • [46] Ultimate Turbulent Taylor-Couette Flow
    Huisman, Sander G.
    van Gils, Dennis P. M.
    Grossmann, Siegfried
    Sun, Chao
    Lohse, Detlef
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [47] HOMOCLINIC DYNAMICS IN TAYLOR-COUETTE FLOW
    OHLE, F
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (05): : T398 - T399
  • [48] Transient growth in Taylor-Couette flow
    Hristova, H
    Roch, S
    Schmid, PJ
    Tuckerman, LS
    [J]. PHYSICS OF FLUIDS, 2002, 14 (10) : 3475 - 3484
  • [49] Transient turbulence in Taylor-Couette flow
    Borrero-Echeverry, Daniel
    Schatz, Michael F.
    Tagg, Randall
    [J]. PHYSICAL REVIEW E, 2010, 81 (02):
  • [50] Delaying transition in Taylor-Couette flow with axial motion of the inner cylinder
    Weisberg, AY
    Kevrekidis, IG
    Smits, AJ
    [J]. JOURNAL OF FLUID MECHANICS, 1997, 348 : 141 - 151