Representation learning via a semi-supervised stacked distance autoencoder for image classification

被引:0
|
作者
Liang Hou
Xiao-yi Luo
Zi-yang Wang
Jun Liang
机构
[1] Zhejiang University,College of Control Science and Engineering
关键词
Autoencoder; Image classification; Semi-supervised learning; Neural network; TP391.9;
D O I
暂无
中图分类号
学科分类号
摘要
Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the “distance” information between samples from different categories. The model is called a semi-supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.
引用
收藏
页码:1005 / 1018
页数:13
相关论文
共 50 条
  • [41] Semi-supervised deep autoencoder for seismic facies classification
    Liu, Xingye
    Li, Bin
    Li, Jingye
    Chen, Xiaohong
    Li, Qingchun
    Chen, Yangkang
    GEOPHYSICAL PROSPECTING, 2021, 69 (06) : 1295 - 1315
  • [42] Semi-Supervised Learning via Geodesic Weighted Sparse Representation
    Wang, Jianqiao
    Li, Yuehua
    Chen, Jianfei
    Li, Yuanjiang
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2014, E97D (06): : 1673 - 1676
  • [43] Semi-Supervised Crowd Counting via Multiple Representation Learning
    Wei, Xing
    Qiu, Yunfeng
    Ma, Zhiheng
    Hong, Xiaopeng
    Gong, Yihong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5220 - 5230
  • [44] A Discriminant Sparse Representation Graph-Based Semi-Supervised Learning for Hyperspectral Image Classification
    Shao, Yuanjie
    Gao, Changxin
    Sang, Nong
    COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 160 - 167
  • [45] Semi-Supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks
    Yan, Peiyao
    He, Feng
    Yang, Yajie
    Hu, Fei
    IEEE ACCESS, 2020, 8 : 54135 - 54144
  • [46] A discriminant sparse representation graph-based semi-supervised learning for hyperspectral image classification
    Shao, Yuanjie
    Gao, Changxin
    Sang, Nong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (08) : 10959 - 10971
  • [47] A discriminant sparse representation graph-based semi-supervised learning for hyperspectral image classification
    Yuanjie Shao
    Changxin Gao
    Nong Sang
    Multimedia Tools and Applications, 2017, 76 : 10959 - 10971
  • [48] Discriminative Sparse Representation for Hyperspectral Image Classification: A Semi-Supervised Perspective
    Xue, Zhaohui
    Du, Peijun
    Su, Hongjun
    Zhou, Shaoguang
    REMOTE SENSING, 2017, 9 (04)
  • [49] Learning Semi-Supervised Representation Towards a Unified Optimization Framework for Semi-Supervised Learning
    Li, Chun-Guang
    Lin, Zhouchen
    Zhang, Honggang
    Guo, Jun
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2767 - 2775
  • [50] Semi-supervised learning by sparse representation
    Yan, Shuicheng
    Wang, Huan
    Society for Industrial and Applied Mathematics - 9th SIAM International Conference on Data Mining 2009, Proceedings in Applied Mathematics, 2009, 2 : 788 - 797