Representation learning via a semi-supervised stacked distance autoencoder for image classification

被引:0
|
作者
Liang Hou
Xiao-yi Luo
Zi-yang Wang
Jun Liang
机构
[1] Zhejiang University,College of Control Science and Engineering
关键词
Autoencoder; Image classification; Semi-supervised learning; Neural network; TP391.9;
D O I
暂无
中图分类号
学科分类号
摘要
Image classification is an important application of deep learning. In a typical classification task, the classification accuracy is strongly related to the features that are extracted via deep learning methods. An autoencoder is a special type of neural network, often used for dimensionality reduction and feature extraction. The proposed method is based on the traditional autoencoder, incorporating the “distance” information between samples from different categories. The model is called a semi-supervised distance autoencoder. Each layer is first pre-trained in an unsupervised manner. In the subsequent supervised training, the optimized parameters are set as the initial values. To obtain more suitable features, we use a stacked model to replace the basic autoencoder structure with a single hidden layer. A series of experiments are carried out to test the performance of different models on several datasets, including the MNIST dataset, street view house numbers (SVHN) dataset, German traffic sign recognition benchmark (GTSRB), and CIFAR-10 dataset. The proposed semi-supervised distance autoencoder method is compared with the traditional autoencoder, sparse autoencoder, and supervised autoencoder. Experimental results verify the effectiveness of the proposed model.
引用
收藏
页码:1005 / 1018
页数:13
相关论文
共 50 条
  • [1] Representation learning via a semi-supervised stacked distance autoencoder for image classification
    Hou, Liang
    Luo, Xiao-yi
    Wang, Zi-yang
    Liang, Jun
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (07) : 1005 - 1018
  • [2] Discriminative semi-supervised learning via deep and dictionary representation for image classification
    Yang, Meng
    Ling, Jie
    Chen, Jiaming
    Feng, Mao
    Yang, Jian
    PATTERN RECOGNITION, 2023, 140
  • [3] Representation Learning via Semi-supervised Autoencoder for Multi-task Learning
    Zhuang, Fuzhen
    Luo, Dan
    Jin, Xin
    Xiong, Hui
    Luo, Ping
    He, Qing
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2015, : 1141 - 1146
  • [4] Semi-Supervised Autoencoder : A Joint Approach of Representation And Classification
    Wu Haiyan
    Yang Haomin
    Li Xueming
    Ren Haijun
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 1424 - 1430
  • [5] A Semi-supervised Stacked Autoencoder Approach for Network Traffic Classification
    Aouedi, Ons
    Piamrat, Kandaraj
    Bagadthey, Dhruvjyoti
    2020 IEEE 28TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (IEEE ICNP 2020), 2020,
  • [6] A Semi-Supervised Stacked Autoencoder Using the Pseudo Label for Classification Tasks
    Lai, Jie
    Wang, Xiaodan
    Xiang, Qian
    Quan, Wen
    Song, Yafei
    ENTROPY, 2023, 25 (09)
  • [7] Hypergraph Variational Autoencoder for Multimodal Semi-supervised Representation Learning
    Liu, Jingquan
    Du, Xiaoyong
    Li, Yuanzhe
    Hu, Weidong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 395 - 406
  • [8] DisenSemi: Semi-Supervised Graph Classification via Disentangled Representation Learning
    Wang, Yifan
    Luo, Xiao
    Chen, Chong
    Hua, Xian-Sheng
    Zhang, Ming
    Ju, Wei
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,
  • [9] Image Classification via Semi-Supervised pLSA
    Zhuang, Liansheng
    She, Lanbo
    Jiang, Yuning
    Tang, Ketan
    Yu, Nenghai
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON IMAGE AND GRAPHICS (ICIG 2009), 2009, : 205 - 208
  • [10] Collaborative Representation Graph for Semi-Supervised Image Classification
    Guo, Junjun
    Li, Zhiyong
    Mu, Jianjun
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (08) : 1871 - 1874