Holographic F(Q,T) Gravity with Lambert Solution

被引:0
|
作者
Filali, Houda [1 ]
Koussour, M. [2 ]
Bennai, M. [2 ]
Laamara, Rachid Ahl [1 ,3 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, Lab High Energy Phys Modeling & Simulat, Rabat, Morocco
[2] Casablanca Hassan II Univ, Quantum Phys & Applicat Team, LPMC, Fac Sci Ben Msik, Casablanca, Morocco
[3] Mohammed V Univ Rabat, Fac Sci, Ctr Phys & Math, Rabat, Morocco
关键词
Modified gravity; Holographic dark energy; Teleparallel gravity; Lambert solution; ACCELERATING UNIVERSE; MODEL; ANISOTROPY; QUANTUM;
D O I
10.1007/s10773-024-05643-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we study a model of holographic dark energy using FLRW cosmology in the context of modified gravity. An extension of the symmetric teleparallel gravity is obtained by considering the gravitational action L is given by an arbitrary function f of the non-metricity Q, where the nonmetricity Q is responsible for the gravitational interaction, and of the trace of the matter-energy-momentum tensor T, so that L=f(Q,T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L=f(Q,T)$$\end{document}. We expand on the features of the derived cosmological model in view of the relation between cosmic time and redshift as t(z)=kt0bf(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t(z)=\frac{kt_{0}}{b}f(z)$$\end{document} where f(z)=Wbkeb-ln(1+z)k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(z)=W\left[ \frac{b}{k}e<^>{\frac{b-ln(1+z)}{k}} \right] $$\end{document} and W denotes the Lambert function, and discuss the evolution trajectories of the equation of state parameter and deceleration parameters in the evolving universe using a special then a generalized version of the model.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Reconstruction of f(T) gravity from the Holographic Dark Energy
    Surajit Chattopadhyay
    Antonio Pasqua
    Astrophysics and Space Science, 2013, 344 : 269 - 274
  • [32] Tsallis Holographic Dark Energy in f(G,T) Gravity
    Sharif, Muhammad
    Saba, Saadia
    SYMMETRY-BASEL, 2019, 11 (01):
  • [33] Reconstruction of f(T) gravity according to holographic dark energy
    Hamani Daouda, M.
    Rodrigues, Manuel E.
    Houndjo, M. J. S.
    EUROPEAN PHYSICAL JOURNAL C, 2012, 72 (02): : 1 - 6
  • [34] GODEL SOLUTION IN f(R, T) GRAVITY
    Santos, A. F.
    MODERN PHYSICS LETTERS A, 2013, 28 (32)
  • [35] Brane stability under f(Q, T) gravity
    Moreira, A. R. P.
    Dong, Shi-Hai
    EUROPEAN PHYSICAL JOURNAL C, 2024, 84 (11):
  • [36] Analysis of reconstructed modified f ( Q, T ) gravity
    Sharif, M.
    Ibrar, Iqra
    CHINESE JOURNAL OF PHYSICS, 2024, 89 : 1578 - 1594
  • [37] Cosmological perturbation theory in f (Q, T) gravity
    Najera, Antonio
    Fajardo, Amanda
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (03):
  • [38] f(Q, T) gravity models with observational constraints
    Arora, Simran
    Pacif, S. K. J.
    Bhattacharjee, Snehasish
    Sahoo, P. K.
    PHYSICS OF THE DARK UNIVERSE, 2020, 30
  • [39] Compact Star Modeling of Durgapal Solution in f(Q) Gravity
    Singh, Akanksha
    Maurya, S. K.
    Shukla, Sacheendra
    GRAVITATION & COSMOLOGY, 2025, 31 (01): : 99 - 112
  • [40] Cosmic Evolution of Holographic Dark Energy in f(G,T) Gravity
    Sharif, M.
    Ikram, Ayesha
    ADVANCES IN HIGH ENERGY PHYSICS, 2019, 2019