Distances from the Vertices of a Regular Simplex

被引:0
|
作者
Mowaffaq Hajja
Mostafa Hayajneh
Bach Nguyen
Shadi Shaqaqha
机构
[1] Philadelphia University,
[2] Yarmouk University,undefined
[3] Louisiana State University,undefined
来源
Results in Mathematics | 2017年 / 72卷
关键词
Algebraic dependence; Cayley–Menger determinant; Germ; Height of an ideal; Integral domain; Krull dimension; Pompeiu’s theorem; Principal ideal; Real analytic function; Regular simplex; Soddy circles; Transcendence degree; Primary 51M04; 51M25; 13F20; 51M20;
D O I
暂无
中图分类号
学科分类号
摘要
If S is a given regular d-simplex of edge length a in the d-dimensional Euclidean space E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}$$\end{document}, then the distances t1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1$$\end{document}, …\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document}, td+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{d+1}$$\end{document} of an arbitrary point in E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {E}$$\end{document} to the vertices of S are related by the elegant relation (d+1)a4+t14+⋯+td+14=a2+t12+⋯+td+122.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (d+1)\left( a^4+t_1^4+\cdots +t_{d+1}^4\right) =\left( a^2+t_1^2+\cdots +t_{d+1}^2\right) ^2. \end{aligned}$$\end{document}The purpose of this paper is to prove that this is essentially the only relation that exists among t1,…,td+1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_1,\ldots ,t_{d+1}.$$\end{document} The proof uses tools from analysis, algebra, and geometry.
引用
收藏
页码:633 / 648
页数:15
相关论文
共 50 条