Distances from the Vertices of a Regular Simplex

被引:1
|
作者
Hajja, Mowaffaq [1 ]
Hayajneh, Mostafa [2 ]
Bach Nguyen [3 ]
Shaqaqha, Shadi [2 ]
机构
[1] Philadelphia Univ, POB 1, Amman 19392, Jordan
[2] Yarmouk Univ, Irbid, Jordan
[3] Louisiana State Univ, Baton Rouge, LA 70803 USA
关键词
Algebraic dependence; Cayley-Menger determinant; Germ; Height of an ideal; Integral domain; Krull dimension; Pompeiu's theorem; Principal ideal; Real analytic function; Regular simplex; Soddy circles; Transcendence degree;
D O I
10.1007/s00025-017-0689-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If S is a given regular d-simplex of edge length a in the d-dimensional Euclidean space epsilon, then the distances t(1), ... , t(d+1) of an arbitrary point in epsilon to the vertices of S are related by the elegant relation (d + 1) (a(4) + t(1)(4) + ... + t(d+1)(4)) = (a(2) + t(1)(2) + ... + t(2)(d+1)) The purpose of this paper is to prove that this is essentially the only relation that exists among t(1),..., t(d+1). The proof uses tools from analysis, algebra, and geometry.
引用
收藏
页码:633 / 648
页数:16
相关论文
共 50 条