Rédei permutations with cycles of the same length

被引:0
|
作者
Juliane Capaverde
Ariane M. Masuda
Virgínia M. Rodrigues
机构
[1] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
[2] The City University of New York,Department of Mathematics, New York City College of Technology
来源
关键词
Rédei function; Involution; Permutation; Cycle decomposition;
D O I
暂无
中图分类号
学科分类号
摘要
Let Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{q}$$\end{document} be a finite field of odd characteristic. We study Rédei functions that induce permutations over P1(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^1({\mathbb {F}}_{q})$$\end{document} whose cycle decomposition contains only cycles of length 1 and j, for an integer j≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j\ge 2$$\end{document}. When j is 4 or a prime number, we give necessary and sufficient conditions for a Rédei permutation of this type to exist over P1(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {P}^1({\mathbb {F}}_{q})$$\end{document}, characterize Rédei permutations consisting of 1- and j-cycles, and determine their total number. We also present explicit formulas for Rédei involutions based on the number of fixed points, and procedures to construct Rédei permutations with a prescribed number of fixed points and j-cycles for j∈{3,4,5}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j \in \{3,4,5\}$$\end{document}.
引用
收藏
页码:2561 / 2579
页数:18
相关论文
共 50 条
  • [1] Redei permutations with cycles of the same length
    Capaverde, Juliane
    Masuda, Ariane M.
    Rodrigues, Virginia M.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (12) : 2561 - 2579
  • [2] On Disjoint Cycles of the Same Length in Tournaments
    Wang, Yun
    Yan, Jin
    Zhu, Shuo
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (02): : 271 - 281
  • [3] On Disjoint Cycles of the Same Length in Tournaments
    Yun Wang
    Jin Yan
    Shuo Zhu
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 271 - 281
  • [4] DISJOINT CHORDED CYCLES OF THE SAME LENGTH
    Chen, Guantao
    Gould, Ronald J.
    Hirohata, Kazuhide
    Ota, Katsuhiro
    Shan, Songling
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (02) : 1030 - 1041
  • [5] On the distribution of the number of cycles of a given length in the class of permutations with known number of cycles
    Timashov, A.N.
    [J]. Discrete Mathematics and Applications, 2001, 11 (05): : 471 - 483
  • [6] Vertex-disjoint cycles of the same length
    Verstraëte, J
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) : 45 - 52
  • [7] Vertex-disjoint cycles of the same length
    Egawa, Y
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1996, 66 (02) : 168 - 200
  • [8] Spectral radius, edge-disjoint cycles and cycles of the same length
    Lin, Huiqiu
    Zhai, Mingqing
    Zhao, Yanhua
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02):
  • [9] ON THE NUMBER OF CYCLES OF GIVEN LENGTH OF A FREE WORD IN SEVERAL RANDOM PERMUTATIONS
    NICA, A
    [J]. RANDOM STRUCTURES & ALGORITHMS, 1994, 5 (05) : 703 - 730
  • [10] Vertex-disjoint cycles of the same length in tournaments
    Wang, Zhilan
    Qi, Yuzhen
    Yan, Jin
    [J]. JOURNAL OF GRAPH THEORY, 2023, 102 (04) : 666 - 683