Spectral radius, edge-disjoint cycles and cycles of the same length

被引:8
|
作者
Lin, Huiqiu [1 ]
Zhai, Mingqing [2 ]
Zhao, Yanhua [1 ]
机构
[1] East China Univ Sci & Technol, Sch Math, Shanghai 200237, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou 239012, Anhui, Peoples R China
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2022年 / 29卷 / 02期
关键词
ODD CYCLES; GRAPHS; NUMBER; CLIQUES;
D O I
10.37236/10783
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we provide spectral conditions for the existence of two edge-disjoint cycles and two cycles of the same length in a graph, which can be viewed as the spectral analogues of Erdos and Posa's condition and Erdos' classic problem about the maximum number of edges of a graph without two edge-disjoint cycles and two cycles of the same length, respectively. Furthermore, we give a spectral condition to guarantee the existence of k edge-disjoint triangles in a graph.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Edge-disjoint packing of stars and cycles
    Jiang, Minghui
    Xia, Ge
    Zhang, Yong
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 640 : 61 - 69
  • [2] Edge-disjoint Hamiltonian cycles in hypertournaments
    Petrovic, V
    Thomassen, C
    [J]. JOURNAL OF GRAPH THEORY, 2006, 51 (01) : 49 - 52
  • [3] EDGE-DISJOINT HAMILTON CYCLES IN GRAPHS
    LI, H
    ZHU, YJ
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1989, 576 : 311 - 322
  • [4] Edge-disjoint Hamilton cycles in graphs
    Christofides, Demetres
    Kuehn, Daniela
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (05) : 1035 - 1060
  • [5] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    WAN, HH
    [J]. UTILITAS MATHEMATICA, 1993, 43 : 245 - 252
  • [6] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    LI, MC
    LIU, ZH
    [J]. CHINESE SCIENCE BULLETIN, 1991, 36 (12): : 1055 - 1056
  • [7] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    李明楚
    刘振宏
    [J]. Science Bulletin, 1991, (12) : 1055 - 1056
  • [8] Edge-Disjoint Packing of Stars and Cycles
    Jiang, Minghui
    Xia, Ge
    Zhang, Yong
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 676 - 687
  • [9] Edge-disjoint Hamilton cycles in graphs
    [J]. 1600, Publ by New York Acad of Sciences, New York, NY, USA (576):
  • [10] Optimal packings of edge-disjoint odd cycles
    Berge, C
    Reed, B
    [J]. DISCRETE MATHEMATICS, 2000, 211 (1-3) : 197 - 202