Annihilators of Local Homology Modules

被引:0
|
作者
Shahram Rezaei
机构
[1] Payame Noor University (PNU),Department of Mathematics, Faculty of Science
来源
关键词
local homology; Artinian modules; annihilator; 13D45; 13E05;
D O I
暂无
中图分类号
学科分类号
摘要
Let (R,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R,\mathfrak{m})$$\end{document} be a local ring, a an ideal of R and M a nonzero Artinian R-module of Noetherian dimension n with hd(a, M) = n. We determine the annihilator of the top local homology module Hna(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\mathfrak{a}}_{n}(M)$$\end{document}. In fact, we prove that AnnR(Hna(M))=Ann(N(a,M)),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{Ann}_R(H^{\mathfrak{a}}_{n}(M))=\text{Ann}(N(\mathfrak{a},M)),$$\end{document} where N(a,M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N(\mathfrak{a},M)$$\end{document} denotes the smallest submodule of M such that hd(a,M/N(a,M))<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{hd}(\mathfrak{a},M/N(\mathfrak{a},M))<n$$\end{document}. As a consequence, it follows that for a complete local ring (R,m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R,\mathfrak{m})$$\end{document} all associated primes of Hna(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{\mathfrak{a}}_{n}(M)$$\end{document} are minimal.
引用
收藏
页码:225 / 234
页数:9
相关论文
共 50 条
  • [31] Annihilators of local cohomology modules and simplicity of rings of differential operators
    Boix A.F.
    Eghbali M.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (4): : 665 - 684
  • [32] ANNIHILATORS OF PERMUTATION MODULES
    Doty, S.
    Nyman, K.
    QUARTERLY JOURNAL OF MATHEMATICS, 2011, 62 (01): : 87 - 102
  • [33] On the Local Homology Theory for Artinian Modules
    K. Khashyarmanesh
    Sh. Salarian
    M. Tousi
    Acta Mathematica Hungarica, 1998, 81 : 109 - 119
  • [34] Generalized Local Homology for Artinian Modules
    Tran Than Nam
    ALGEBRA COLLOQUIUM, 2012, 19 : 1205 - 1212
  • [35] COLOCALIZATION OF GENERALIZED LOCAL HOMOLOGY MODULES
    Hatamkhani, Marziyeh
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2022, 59 (04) : 917 - 928
  • [36] LOCAL HOMOLOGY AND GORENSTEIN FLAT MODULES
    Mashhad, Fatemeh Mohammadi Aghjeh
    Divaani-Aazar, Kamran
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (02)
  • [37] On the local homology theory for Artinian modules
    Khashyarmanesh, K
    Salarian, S
    Tousi, M
    ACTA MATHEMATICA HUNGARICA, 1998, 81 (1-2) : 109 - 119
  • [38] Modules with finite Cousin cohomologies have uniform local cohomological annihilators
    Dibaei, Mohammad T.
    Jafari, Raheleh
    JOURNAL OF ALGEBRA, 2008, 319 (08) : 3291 - 3300
  • [39] Correction to: Annihilators of local cohomology modules and simplicity of rings of differential operators
    Alberto F. Boix
    Majid Eghbali
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2018, 59 (4): : 685 - 688
  • [40] Annihilators of local cohomology modules over a Cohen-Macaulay ring
    Yoshizawa, Takeshi
    JOURNAL OF ALGEBRA, 2022, 594 : 597 - 613