Sequence Dominance in Shift-Invariant Spaces

被引:0
|
作者
Tomislav Berić
Hrvoje Šikić
机构
[1] University of Zagreb,Department of Mathematics
关键词
Shift invariant systems; Bases; Frames; Riesz bases; Periodization function; Besselian property; Hilbertian property; Primary 42C15; Secondary 42A20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a Bessel sequence Bψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\psi $$\end{document} of integer translates of a square integrable function ψ∈L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \in L^2(\mathbb {R})$$\end{document} has the Besselian property if and only if its periodization function pψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\psi $$\end{document} is bounded from below. We also give characterizations of Besselian and Hilbertian properties of a general sequence Bψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\psi $$\end{document} of integer translates in terms of the classical notion of sequence dominance.
引用
收藏
相关论文
共 50 条