Sequence Dominance in Shift-Invariant Spaces

被引:0
|
作者
Tomislav Berić
Hrvoje Šikić
机构
[1] University of Zagreb,Department of Mathematics
关键词
Shift invariant systems; Bases; Frames; Riesz bases; Periodization function; Besselian property; Hilbertian property; Primary 42C15; Secondary 42A20;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a Bessel sequence Bψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\psi $$\end{document} of integer translates of a square integrable function ψ∈L2(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi \in L^2(\mathbb {R})$$\end{document} has the Besselian property if and only if its periodization function pψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_\psi $$\end{document} is bounded from below. We also give characterizations of Besselian and Hilbertian properties of a general sequence Bψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_\psi $$\end{document} of integer translates in terms of the classical notion of sequence dominance.
引用
收藏
相关论文
共 50 条
  • [1] Sequence Dominance in Shift-Invariant Spaces
    Beric, Tomislav
    Sikic, Hrvoje
    [J]. JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [2] Shift-invariant functionals on Banach sequence spaces
    Pietsch, Albrecht
    [J]. STUDIA MATHEMATICA, 2013, 214 (01) : 37 - 66
  • [3] Invariance of shift-invariant spaces
    ZHANG QingYue & SUN WenChang Department of Mathematics and LPMC
    [J]. Science China Mathematics, 2012, 55 (07) : 1395 - 1401
  • [4] Invariance of shift-invariant spaces
    Zhang QingYue
    Sun WenChang
    [J]. SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) : 1395 - 1401
  • [5] Invariance of shift-invariant spaces
    QingYue Zhang
    WenChang Sun
    [J]. Science China Mathematics, 2012, 55 : 1395 - 1401
  • [6] STOCHASTIC DOMINANCE FOR SHIFT-INVARIANT MEASURES
    Anagnostopoulou, Vasso
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (02) : 667 - 682
  • [7] Frames for Weighted Shift-invariant Spaces
    Pilipovic, Stevan
    Simic, Suzana
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (04) : 897 - 912
  • [8] Construction of Frames for Shift-Invariant Spaces
    Pilipovic, Stevan
    Simic, Suzana
    [J]. JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [9] Frames by Iterations in Shift-invariant Spaces
    Aguilera, Alejandra
    Cabrelli, Carlos
    Carbajal, Diana
    Paternostro, Victoria
    [J]. 2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,
  • [10] INTERSECTION OF DILATES OF SHIFT-INVARIANT SPACES
    Bownik, Marcin
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (02) : 563 - 572