How Predator Food Preference can Change the Destiny of Native Prey in Predator–Prey Systems

被引:1
|
作者
Sebastien Gaucel
Dominique Pontier
机构
[1] UMR CNRS 5466,
[2] Mathématiques Appliquées de Bordeaux,undefined
[3] case 26,undefined
[4] UMR CNRS 5558,undefined
[5] Biométrie et Biologie Evolutive,undefined
[6] Université Claude Bernard Lyon 1,undefined
来源
Biological Invasions | 2005年 / 7卷
关键词
age stages; finite time extinction; insular environment; invasion; oscillatory dynamic; predator–prey system; preference; spatial heterogeneities;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to develop and analyse a mathematical model for a predator-2 preys system arising in insular environments. We are interested in the evolution of a native prey population without behavioural traits to cope with predation or competition, after the introduction of alien species. Here, we consider a long living bird population with low fertility rate. We point out the effects of the preference of the predator for either juvenile or adult stages. In addition, we study the impact of alien prey introduction in such a model. We use a reaction-diffusion system with a singular logistic right hand side. The aim of this work is to bring interesting dynamics to the fore. As a first example, oscillatory behaviour takes place in the model without alien preys and when predators have an average preference coefficient. Introduction of alien preys can lead to species extinction.
引用
收藏
页码:795 / 806
页数:11
相关论文
共 50 条
  • [31] Qualitative analysis of additional food provided predator–prey system with anti-predator behaviour in prey
    K. Durga Prasad
    B. S. R. V. Prasad
    [J]. Nonlinear Dynamics, 2019, 96 : 1765 - 1793
  • [32] ON THE CONTROLLABILITY OF PREDATOR-PREY SYSTEMS
    JOSHI, MC
    GEORGE, RK
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (02) : 243 - 258
  • [33] Relaxation Oscillations in Predator Prey Systems
    Ai, B. Shangbing
    Yi, Yingfei
    [J]. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (SUPPL 1)
  • [34] Predator group size distributions in predator-prey systems
    Wang, Xueting
    Pan, Qiuhui
    Kang, Yibin
    He, Mingfeng
    [J]. ECOLOGICAL COMPLEXITY, 2016, 26 : 117 - 127
  • [35] Predator–prey systems in streams and rivers
    Frank M. Hilker
    Mark A. Lewis
    [J]. Theoretical Ecology, 2010, 3 : 175 - 193
  • [36] STABILITY OF PREDATOR-PREY SYSTEMS
    SMITH, JM
    SLATKIN, M
    [J]. ECOLOGY, 1973, 54 (02) : 384 - 391
  • [37] OPTIMAL HARVESTING IN PREDATOR PREY SYSTEMS
    BRAUER, F
    SOUDACK, AC
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (01) : 111 - 128
  • [38] ON FLUCTUATIONS OF THE PREDATOR-PREY SYSTEMS
    GILL, MI
    [J]. IZVESTIYA AKADEMII NAUK SSSR SERIYA BIOLOGICHESKAYA, 1987, (04): : 621 - 622
  • [39] Adhesion Forces in Bacterial Predator-Prey and Prey-Prey Systems
    Fitzmaurice, Dylan
    Saha, Puja
    Nunez, Megan E.
    Spain, Eileen M.
    Volle, Catherine M.
    Ferguson, Megan A.
    [J]. BIOPHYSICAL JOURNAL, 2019, 116 (03) : 431A - 431A
  • [40] STABILITY OF PREDATOR-PREY SYSTEMS
    SMITH, JM
    [J]. BIOMETRICS, 1972, 28 (04) : 1158 - 1158