Stabilized finite volume element method for the 2D nonlinear incompressible viscoelastic flow equation

被引:0
|
作者
Hong Xia
Zhendong Luo
机构
[1] North China Electric Power University,School of Control and Computer Engineering
[2] North China Electric Power University,School of Mathematics and Physics
来源
关键词
stabilized finite volume element method; a non-dimensional real together with two Gaussian quadratures; incompressible nonlinear viscoelastic flow equation; existence, stability, and error estimate; 65N30; 35Q10;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we devote ourselves to building a stabilized finite volume element (SFVE) method with a non-dimensional real together with two Gaussian quadratures of the nonlinear incompressible viscoelastic flow equation in a two-dimensional (2D) domain, analyzing the existence, stability, and error estimates of the SFVE solutions and verifying the validity of the preceding theoretical conclusions by numerical simulations.
引用
收藏
相关论文
共 50 条
  • [41] Stabilized finite element simulation of incompressible high Reynolds number flow
    Miyamori, T
    Inomata, W
    Kashiyama, K
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON COMPUTING IN CIVIL AND BUILDING ENGINEERING, VOLS 1-4, 1997, : 1567 - 1572
  • [42] STABILIZED FINITE-ELEMENT FORMULATIONS FOR INCOMPRESSIBLE-FLOW COMPUTATIONS
    TEZDUYAR, TE
    ADVANCES IN APPLIED MECHANICS, VOL 28, 1992, 28 : 1 - 44
  • [43] A segregated spectral finite element method for the 2D transient incompressible Navier-Stokes equations
    He, Wenqiang
    Qin, Guoliang
    Lin, Jingxiang
    Jia, Cheng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (02) : 521 - 537
  • [44] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Wang, Kun
    Si, Zhiyong
    Yang, Yanfang
    NUMERICAL ALGORITHMS, 2012, 60 (01) : 75 - 100
  • [45] Stabilized finite element method for the viscoelastic Oldroyd fluid flows
    Kun Wang
    Zhiyong Si
    Yanfang Yang
    Numerical Algorithms, 2012, 60 : 75 - 100
  • [46] The weak Galerkin finite element method for incompressible flow
    Zhang, Tie
    Lin, Tao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (01) : 247 - 265
  • [47] A Hermite finite element method for incompressible fluid flow
    Holdeman, J. T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 64 (04) : 376 - 408
  • [48] A finite element variational multiscale method for incompressible flow
    Jiang, Yu
    Mei, Liquan
    Wei, Huiming
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 374 - 384
  • [49] Analysis of Stabilized Finite Volume Method for Poisson Equation
    Zhang, Tong
    Huang, Pengzhan
    Xu, Shunwei
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (03) : 415 - 431
  • [50] Stabilized finite element method for the radial Dirac equation
    Almanasreh, Hasan
    Salomonson, Sten
    Svanstedt, Nils
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 236 : 426 - 442