Discrete convolution operators and Riesz systems generated by actions of abelian groups

被引:0
|
作者
G. Perez-Villalon
机构
[1] UPM,Departamento de Matematica Aplicada a las TIC
来源
关键词
Discrete convolution; C*-algebra; Multiplier; Shift-invariant space; Discrete abelian group and Riesz basis; 47L25; 43A99; 46L99;
D O I
暂无
中图分类号
学科分类号
摘要
We study the bounded endomorphisms of ℓ2(G)×⋯×ℓ2(G)=ℓN2(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^2(G)\times \dots \times \ell ^2(G)=\ell _{N}^2(G)$$\end{document} that commute with translations, where G is a discrete abelian group. It is shown that they form a C*-algebra isomorphic to the C*-algebra of N×N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\times N$$\end{document} matrices with entries in L∞(G^)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty ({\widehat{G}})$$\end{document}, where G^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widehat{G}}$$\end{document} is the dual space of G. Characterizations of when these endomorphisms are invertible, and expressions for their norms and for the norms of their inverses, are given. These results allow us to study Riesz systems that arise from the action of G on a finite set of elements of a Hilbert space.
引用
收藏
页码:285 / 297
页数:12
相关论文
共 50 条
  • [1] Discrete convolution operators and Riesz systems generated by actions of abelian groups
    Perez-Villalon, G.
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2020, 11 (02) : 285 - 297
  • [2] Riesz and frame systems generated by unitary actions of discrete groups
    Barbieri, Davide
    Hernandez, Eugenio
    Parcet, Javier
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2015, 39 (03) : 369 - 399
  • [3] ON RIESZ SUBSETS OF ABELIAN DISCRETE-GROUPS
    GODEFROY, G
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1988, 61 (03) : 301 - 331
  • [4] Convolution Systems on Discrete Abelian Groups as a Unifying Strategy in Sampling Theory
    Garcia, Antonio G.
    Hernandez-Medina, Miguel A.
    Perez-Villalon, Gerardo
    [J]. RESULTS IN MATHEMATICS, 2020, 75 (01)
  • [5] Convolution Systems on Discrete Abelian Groups as a Unifying Strategy in Sampling Theory
    Antonio G. García
    Miguel A. Hernández-Medina
    Gerardo Pérez-Villalón
    [J]. Results in Mathematics, 2020, 75
  • [6] CONVOLUTION OPERATORS ON CERTAIN DISCRETE GROUPS
    LEINERT, M
    [J]. STUDIA MATHEMATICA, 1974, 52 (02) : 149 - 158
  • [7] An Algebra Generated by Multiplicative Discrete Convolution Operators
    Avsyankin, O. G.
    [J]. RUSSIAN MATHEMATICS, 2011, 55 (01) : 1 - 6
  • [8] CONVOLUTION DOMINATED OPERATORS ON COMPACT EXTENSIONS OF ABELIAN GROUPS
    Fendler, Gero
    Leinert, Michael
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (01): : 99 - 112
  • [9] Convolution-Dominated Operators on Discrete Groups
    Gero Fendler
    Karlheinz Gröchenig
    Michael Leinert
    [J]. Integral Equations and Operator Theory, 2008, 61 : 493 - 509
  • [10] Convolution-dominated operators on discrete groups
    Fendler, Gero
    Groechenig, Karlheinz
    Leinert, Michael
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 61 (04) : 493 - 509