Convolution-Dominated Operators on Discrete Groups

被引:0
|
作者
Gero Fendler
Karlheinz Gröchenig
Michael Leinert
机构
[1] Universität Wien,Fakultät für Mathematik
[2] Universität Heidelberg,Institut für Angewandte Mathematik
来源
关键词
Groups of polynomial growth; convolution; symmetric Banach algebras; inverse-closed; generalized ; -algebra; Primary 47B35; Secondary 43A20;
D O I
暂无
中图分类号
学科分类号
摘要
We study infinite matrices A indexed by a discrete group G that are dominated by a convolution operator in the sense that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|(Ac)(x)| \leq (a \ast |c|)(x)$$\end{document} for x ∈ G and some \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a \in \ell^1(G)$$\end{document}. This class of “convolution-dominated” matrices forms a Banach-*-algebra contained in the algebra of bounded operators on ℓ2(G). Our main result shows that the inverse of a convolution-dominated matrix is again convolution-dominated, provided that G is amenable and rigidly symmetric. For abelian groups this result goes back to Gohberg, Baskakov, and others, for non-abelian groups completely different techniques are required, such as generalized L1-algebras and the symmetry of group algebras.
引用
收藏
页码:493 / 509
页数:16
相关论文
共 50 条