Complete finite semidirect products and wreath products

被引:0
|
作者
Ben Brewster
Elizabeth Wilcox
机构
[1] Binghamton University,Department of Mathematical Sciences
[2] Colgate University,Department of Mathematics
来源
Archiv der Mathematik | 2011年 / 96卷
关键词
20D45; 20D40; Automorphisms; Products of Subgroups;
D O I
暂无
中图分类号
学科分类号
摘要
A complete group is one with a trivial center and with all automorphisms inner. This paper uses group cohomology to give a sufficient condition for a finite semidirect product \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G = N \rtimes H}$$\end{document} with CG(N) ≤ N to be complete and proves a partial converse. These results are enough to fully characterize complete finite permutational wreath products and to specialize that characterization in the case of finite standard wreath products.
引用
收藏
页码:301 / 309
页数:8
相关论文
共 50 条
  • [31] Cryptographic Protocols using Semidirect Products of Finite Groups
    Lanel, G. H. J.
    Jinasena, T. M. K. K.
    Welihinda, A. K.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (08): : 17 - 27
  • [32] NORMAL-COMPLETE STANDARD WREATH-PRODUCTS
    PANAGOPOULOS, J
    RAPTIS, E
    VARSOS, D
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 1992, 41 (1-2): : 83 - 88
  • [33] Finite generation of iterated wreath products in product action
    Vannacci, Matteo
    [J]. ARCHIV DER MATHEMATIK, 2015, 105 (03) : 205 - 214
  • [34] Representation zeta functions of wreath products with finite groups
    Bartholdi, Laurent
    de la Harpe, Pierre
    [J]. GROUPS GEOMETRY AND DYNAMICS, 2010, 4 (02) : 209 - 249
  • [35] A FAMILY OF FINITE GELFAND PAIRS ASSOCIATED WITH WREATH PRODUCTS
    Benson, Chal
    Ratcliff, Gail
    [J]. COLLOQUIUM MATHEMATICUM, 2018, 152 (01) : 65 - 78
  • [36] On semidirect and two-sided semidirect products of finite J-trivial monoids
    BlanchetSadri, F
    [J]. RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1996, 30 (05): : 457 - 482
  • [37] Finite generation of iterated wreath products in product action
    Matteo Vannacci
    [J]. Archiv der Mathematik, 2015, 105 : 205 - 214
  • [38] Commutativity degrees of wreath products of finite Abelian groups
    Erovenko, Igor V.
    Sury, B.
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2008, 77 (01) : 31 - 36
  • [39] On categories with semidirect products
    Martins-Ferreira, Nelson
    Sobral, Manuela
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (8-9) : 1968 - 1975
  • [40] Semidirect products of lattices
    Přemysl Jedlička
    [J]. Algebra universalis, 2007, 57 : 259 - 272