Comparative study of conventional and artificial neural network-based ETo estimation models

被引:0
|
作者
M. Kumar
A. Bandyopadhyay
N. S. Raghuwanshi
R. Singh
机构
[1] Vivekananda Institute of Hill Agriculture (Indian Council of Agricultural Research),SWCE
[2] National Institute of Hydrology,Centre for Flood Management Studies (Brahmaputra Basin)
[3] Indian Institute of Technology,Agricultural and Food Engineering Department
来源
Irrigation Science | 2008年 / 26卷
关键词
Artificial Neural Network; Hide Layer; Artificial Neural Network Model; Training Scheme; Humid Region;
D O I
暂无
中图分类号
学科分类号
摘要
Accurate estimation of reference crop evapotranspiration (ETo) is required for several hydrological studies and thus, in the past, a number of ETo estimation methods have been developed with different degree of complexity and data requirement. The present study was carried out to develop artificial neural network (ANN) based reference crop evapotranspiration models corresponding to the ASCE’s best ranking conventional ETo estimation methods (Jensen et al. ASCE Manual and Rep. on Engrg. Pract. no. 70, 1990). Among the radiation methods, FAO-24 radiation (or Rad) method for arid and Turc method for humid region, and among the temperature methods, FAO-24 Blaney–Criddle (or BC) method were studied. The ANN architectures corresponding to the above three less data-intensive methods were developed for four CIMIS (California Irrigation Management Information System) stations, namely, Davis, Castroville, Mulberry, and West Side Field station. The comprehensive ANN architecture developed by Kumar et al. (J Irrig Drain Eng 128(4):224–233, 2002) corresponding to Penman–Monteith (PM) ETo for Davis was also tried for the other three stations. Daily meteorological data for a period of more than 10 years (01 January 1990 to 30 June 2000) were collected from these stations and were used to train, test, and validate the ANN models. Two learning schemes, namely, standard back-propagation with learning rate of 0.2 and standard back-propagation with momentum having learning rate of 0.2 and momentum term of 0.95 were considered. ETo estimation performance of the ANN models was compared with the FAO-56 PM method. It was found that the ANN models gave better closeness to FAO-56 PM ETo than the best ranking method in each category (radiation and temperature). Thus these models can be used for ETo estimation in agreement with climatic data availability, when not all required climatic variables are observed.
引用
下载
收藏
页码:531 / 545
页数:14
相关论文
共 50 条
  • [31] Artificial neural network-based performance assessments
    Stevens, R
    Ikeda, J
    Casillas, A
    Palacio-Cayetano, J
    Clyman, S
    COMPUTERS IN HUMAN BEHAVIOR, 1999, 15 (3-4) : 295 - 313
  • [32] Artificial neural network-based psychrometric predictor
    Mittal, GS
    Zhang, J
    BIOSYSTEMS ENGINEERING, 2003, 85 (03) : 283 - 289
  • [33] An artificial neural network-based fall detection
    Yoo, SunGil
    Oh, Dongik
    INTERNATIONAL JOURNAL OF ENGINEERING BUSINESS MANAGEMENT, 2018, 10
  • [34] Artificial neural network-based performance assessments
    Stevens, R.
    Ikeda, J.
    Casillas, A.
    Palacio-Cayetano, J.
    Clyman, S.
    Computers in Human Behavior, 1999, 15 (03): : 295 - 313
  • [35] Artificial Neural Network-based Fault Detection
    Khelifi, Asma
    Ben Lakhal, Nadhir Mansour
    Gharsallaoui, Hajer
    Nasri, Othman
    2018 5TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2018, : 1017 - 1022
  • [36] Artificial neural network-based face recognition
    Réda, A
    Aoued, B
    ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 439 - 442
  • [37] Neural Network-Based Estimation for OFDM Channels
    Cheng, Chia-Hsin
    Huang, Yung-Fa
    Huang, Yao-Hung
    Chen, Hsing-Chung
    Yao, Tsung-Yu
    2015 IEEE 29th International Conference on Advanced Information Networking and Applications (IEEE AINA 2015), 2015, : 600 - 604
  • [38] Neural network-based ATM QoS estimation
    Sheng, WB
    Rueda, J
    Blight, D
    IEEE WESCANEX 97 COMMUNICATIONS, POWER AND COMPUTING CONFERENCE PROCEEDINGS, 1997, : 1 - 6
  • [39] Performance estimation of a neural network-based controller
    Schumann, Johann
    Liu, Yan
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 981 - 990
  • [40] Improvement in artificial neural network-based estimation of grid connected photovoltaic power output
    Huang, Chao
    Bensoussan, Alain
    Edesess, Michael
    Tsui, Kwok L.
    RENEWABLE ENERGY, 2016, 97 : 838 - 848