Thermodynamic formalism and localization in Lorentz gases and hopping models
被引:0
|
作者:
C. Appert
论文数: 0引用数: 0
h-index: 0
机构:University of Utrecht,Instituut voor Theoretische Fysica
C. Appert
H. van Beijeren
论文数: 0引用数: 0
h-index: 0
机构:University of Utrecht,Instituut voor Theoretische Fysica
H. van Beijeren
M. H. Ernst
论文数: 0引用数: 0
h-index: 0
机构:University of Utrecht,Instituut voor Theoretische Fysica
M. H. Ernst
J. R. Dorfman
论文数: 0引用数: 0
h-index: 0
机构:University of Utrecht,Instituut voor Theoretische Fysica
J. R. Dorfman
机构:
[1] University of Utrecht,Instituut voor Theoretische Fysica
[2] University of Maryland,Department of Physics and IPST
[3] Ecole Normale Supérieure,CNRS. LPS
来源:
Journal of Statistical Physics
|
1997年
/
87卷
关键词:
Lorentz lattice gases;
chaos;
thermodynamic formalism;
random walks;
localization transition;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The thermodynamic formalism expresses chaotic properties of dynamical systems in terms of the Ruelle pressure ψ(β). The inverse-temperature-like variable β allows one to scan the structure of the probability distributin in the dynamic phase space. This formalism is applied here to a lorentz lattice gas. where a particle moving on a lattice of sizeLd collides with fixed scatterers placed at random locations. Here we give rigorous arguments that the Ruelle pressure in the limit of infinite systems has two branches joining with a slope discontinuity at β=1. The low- and high-β branches correspond to localization of trajectories on respectively the “most chaotic” (highest density) region and the “most deterministic” (lowest density) region, i.e. ψ(β) is completely controlled by rare fluctuations in the distribution of scatterers on the lattice. and it dose not carry and information on the global structure of the static disorder. As β approaches unity from either side, a localization-delocalization transition leads to a state where trajectories are extended and carry information on transprot properties. At finiteL the narrow region around β=1 where the trajectories are extended scales as (InL)−2. where α depends on the sign of 1−β, ifd>1, and as (L InL)−1 ifd=1. This result appears to be general for diffusive systems with static disorder, such as random walks in random environments or for the continuous Lorentz gas. Other models of random walks on disordered lattices, showing the same phenomenon, are discussed.
机构:
Univ Sousse, Ecole Super Sci & Technol Hammam Sousse, Sousse 4011, TunisiaKing Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
Ben Abid, Moez
Ben Omrane, Ines
论文数: 0引用数: 0
h-index: 0
机构:
Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math, POB 90950, Riyadh 11623, Saudi ArabiaKing Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia