Video-based person re-identification using a novel feature extraction and fusion technique

被引:0
|
作者
Wanru Song
Jieying Zheng
Yahong Wu
Changhong Chen
Feng Liu
机构
[1] Nanjing University of Posts and Telecommunications,Jiangsu Key Lab of Image Processing and Image Communications
来源
Multimedia Tools and Applications | 2020年 / 79卷
关键词
Person re-identification; Video; Feature representation; Hand-crafted; Deep-learned;
D O I
暂无
中图分类号
学科分类号
摘要
Person re-identification has received extensive attention in the academic community. In this paper, a novel multiple feature fusion network (MPFF-Net) is proposed for video-based person re-identification. The proposed network is used to obtain the robust and discriminative feature representation for describing the pedestrian in the video, which contains the hand-crafted and deep-learned parts. First, the image-level features of all consecutive frames are extracted. Then the hand-crafted branch uses these descriptors to obtain the average feature of the video and the information of frame-to-frame differences. The deep-learned branch is based on the bidirectional LSTM (BiLSTM) network. It is responsible for aggregating frame-wise representations of human regions and yielding sequence-level features. Furthermore, the problem of misalignment is taken into account in this branch. Finally, the hand-crafted and deep-learned parts are considered to be complementary, and the fusion of them can help to capture the complete information of the video. Extensive experiments are conducted on the iLIDS-VID, PRID2011 and MARS datasets. The results demonstrate that the proposed algorithm outperforms state-of-the-art video-based re-identification methods.
引用
收藏
页码:12471 / 12491
页数:20
相关论文
共 50 条
  • [41] Joint Attentive Spatial-Temporal Feature Aggregation for Video-Based Person Re-Identification
    Chen, Lin
    Yang, Hua
    Gao, Zhiyong
    IEEE ACCESS, 2019, 7 : 41230 - 41240
  • [42] A FEATURE FUSION STRATEGY FOR PERSON RE-IDENTIFICATION
    Gao, Mu
    Ai, Haizhou
    Bai, Bo
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4274 - 4278
  • [43] Person Re-Identification Based on Feature Fusion in AI System
    Chan, Sixian
    Liu, Yating
    Pan, Xiaotian
    Lei, Yanjing
    INTERNATIONAL JOURNAL OF HUMANOID ROBOTICS, 2024, 21 (05)
  • [44] Person Re-identification Based on Color and Texture Feature Fusion
    Yuan, Li
    Tian, Ziru
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, ICIC 2016, PT II, 2016, 9772 : 341 - 352
  • [45] Temporal Extension Topology Learning for Video-Based Person Re-identification
    Ning, Jiaqi
    Li, Fei
    Liu, Rujie
    Takeuchi, Shun
    Suzuki, Genta
    COMPUTER VISION - ACCV 2022 WORKSHOPS, 2023, 13848 : 213 - 225
  • [46] TEMPORALLY ALIGNED POOLING REPRESENTATION FOR VIDEO-BASED PERSON RE-IDENTIFICATION
    Gao, Changxin
    Wang, Jin
    Liu, Leyuan
    Yu, Jin-Gang
    Sang, Nong
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 4284 - 4288
  • [47] A Duplex Spatiotemporal Filtering Network for Video-based Person Re-identification
    Zheng, Chong
    Wei, Ping
    Zheng, Nanning
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 7551 - 7557
  • [48] CONVOLUTIONAL TEMPORAL ATTENTION MODEL FOR VIDEO-BASED PERSON RE-IDENTIFICATION
    Rahman, Tanzila
    Rochan, Mrigank
    Wang, Yang
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1102 - 1107
  • [49] Multiscale Aligned SpatialTemporal Interaction for Video-Based Person Re-Identification
    Ran, Zhidan
    Wei, Xuan
    Liu, Wei
    Lu, Xiaobo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8536 - 8546
  • [50] Diverse part attentive network for video-based person re-identification *
    Shu, Xiujun
    Li, Ge
    Wei, Longhui
    Zhong, Jia-Xing
    Zang, Xianghao
    Zhang, Shiliang
    Wang, Yaowei
    Liang, Yongsheng
    Tian, Qi
    PATTERN RECOGNITION LETTERS, 2021, 149 : 17 - 23