On graded generalized local cohomology

被引:0
|
作者
Naser Zamani
机构
[1] Mohaghegh Ardabili University,Faculty of Science
来源
Archiv der Mathematik | 2006年 / 86卷
关键词
13D07; 13D45; 13E10;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R = {\mathop \oplus \limits_{i\underline{\underline > } 0} }R_{i} $$\end{document} be a homogeneous Noetherian ring with local base ring (R0,m0) and let M,N be two finitely generated graded R-modules. Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^{i}_{{R + }} {\left( {M,N} \right)} $$\end{document} denote the i-th graded generalized local cohomology of N relative to M with support in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ R = {\mathop \oplus \limits_{i\underline{\underline > } 0} }R_{i} $$\end{document} . We study the vanishing, tameness and asymptotical stability of the homogeneous components of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ H^{i}_{{R + }} {\left( {M,N} \right)} $$\end{document}.
引用
收藏
页码:321 / 330
页数:9
相关论文
共 50 条
  • [31] Artinianness of Composed Graded Local Cohomology Modules
    Dehghani-Zadeh, Fatemeh
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (02): : 271 - 278
  • [32] Graded F-modules and local cohomology
    Zhang, Yi
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2012, 44 : 758 - 762
  • [33] Multiplicities of graded components of local cohomology modules
    Brodmann, M
    Rohrer, F
    Sazeedeh, R
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 197 (1-3) : 249 - 278
  • [34] Artinianness of Certain Graded Local Cohomology Modules
    Mafi, Amir
    Saremi, Hero
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (01): : 153 - 156
  • [35] On derived functors of graded local cohomology modules
    Puthenpurakal, Tony J.
    Singh, Jyoti
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2019, 167 (03) : 549 - 565
  • [36] LOCAL COHOMOLOGY OF GRADED RINGS AND PROJECTIVE SCHEMES
    BUESO, JL
    TORRECILLAS, B
    VERSCHOREN, A
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 1989, 57 (03) : 213 - 228
  • [37] Graded Components of Local Cohomology Modules II
    Tony J. Puthenpurakal
    Sudeshna Roy
    [J]. Vietnam Journal of Mathematics, 2024, 52 : 1 - 24
  • [38] Cofiniteness of generalized local cohomology modules
    Shen, Jingwen
    Yang, Xiaoyan
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [39] On Artinian generalized local cohomology modules
    Muhammet Tamer Koşan
    [J]. Proceedings - Mathematical Sciences, 2009, 119 : 453 - 458
  • [40] COFINITE MODULES AND GENERALIZED LOCAL COHOMOLOGY
    Mafi, Amir
    Saremi, Hero
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2009, 35 (04): : 1013 - 1018