On an Algebra of Toeplitz Operators With Piecewise Continuous Symbols

被引:0
|
作者
Maribel Loaiza
机构
[1] Circuito Exterior,Instituto de Matemáticas, UNAM, Area de la Investigación científica
[2] Ciudad Universitaria,undefined
来源
关键词
47L80; Toeplitz operators;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D = \{ z \in \;\mathbb{C}|\;|z| < 1\} $$ \end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{L}$$\end{document} be a finite collection of smooth curves in D. Given k points \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_1 , \ldots z_k \in \partial D$$ \end{document} consider the family \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_r = M_r (z_1 , \ldots ,z_k ) \subset L_\infty (D)$$ \end{document} of all bounded and continuous functions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\backslash \mathcal{L},$$\end{document} with finite limits at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z_1 , \ldots ,z_{k - 1} $$\end{document} and radial limits at zk. We study the Toeplitz operator algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{T}(M_r )$$\end{document} corresponding to Mr and we prove that its Calkin algebra is isomorphic to the algebra of all continuous functions on some compact set. This fact implies that the commutator of two Toeplitz operators with this kind of symbols is compact. We also prove that the semi-commutator of such Toeplitz operators is not compact, in general.
引用
收藏
页码:141 / 153
页数:12
相关论文
共 50 条