Regularity results for eikonal-type equations with nonsmooth coefficients

被引:0
|
作者
Piermarco Cannarsa
Pierre Cardaliaguet
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[2] CEREMADE,undefined
[3] Université Paris-Dauphine,undefined
[4] UMR CNRS 7534,undefined
关键词
49L25; 34A60; 26B25; 49N60; Viscosity solutions; Semiconcave functions; Differential inclusions; Extremal trajectories;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions of the Hamilton–Jacobi equation H(x,−Du(x)) = 1, where H(·, p) is Hölder continuous and the level-sets {H(x, ·) ≤ 1} are convex and satisfy positive lower and upper curvature bounds, are shown to be locally semiconcave with a power-like modulus. An essential step of the proof is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal C}^{1,\alpha}}$$\end{document} -regularity of the extremal trajectories associated with the multifunction generated by DpH.
引用
收藏
页码:751 / 769
页数:18
相关论文
共 50 条