Regularity results for eikonal-type equations with nonsmooth coefficients

被引:0
|
作者
Piermarco Cannarsa
Pierre Cardaliaguet
机构
[1] Università di Roma “Tor Vergata”,Dipartimento di Matematica
[2] CEREMADE,undefined
[3] Université Paris-Dauphine,undefined
[4] UMR CNRS 7534,undefined
关键词
49L25; 34A60; 26B25; 49N60; Viscosity solutions; Semiconcave functions; Differential inclusions; Extremal trajectories;
D O I
暂无
中图分类号
学科分类号
摘要
Solutions of the Hamilton–Jacobi equation H(x,−Du(x)) = 1, where H(·, p) is Hölder continuous and the level-sets {H(x, ·) ≤ 1} are convex and satisfy positive lower and upper curvature bounds, are shown to be locally semiconcave with a power-like modulus. An essential step of the proof is the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathcal C}^{1,\alpha}}$$\end{document} -regularity of the extremal trajectories associated with the multifunction generated by DpH.
引用
收藏
页码:751 / 769
页数:18
相关论文
共 50 条
  • [1] Regularity results for eikonal-type equations with nonsmooth coefficients
    Cannarsa, Piermarco
    Cardaliaguet, Pierre
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (06): : 751 - 769
  • [2] On entire solutions to eikonal-type equations
    Chen, Wei
    Han, Qi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (01)
  • [3] EIKONAL-TYPE EXPANSIONS
    ADACHI, T
    INAGAKI, T
    PROGRESS OF THEORETICAL PHYSICS, 1978, 59 (01): : 320 - 322
  • [4] Construction of a Minimax Solution for an Eikonal-Type Equation
    Lebedev, P. D.
    Uspenskii, A. A.
    Ushakov, V. N.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 263 (Suppl 2) : S191 - S201
  • [5] Construction of a minimax solution for an eikonal-type equation
    P. D. Lebedev
    A. A. Uspenskii
    V. N. Ushakov
    Proceedings of the Steklov Institute of Mathematics, 2008, 263 : 191 - 201
  • [6] DERIVATION, EXTENSION AND RENORMALIZATION OF EIKONAL-TYPE APPROXIMATIONS
    ORZALESI, CA
    LETTERE AL NUOVO CIMENTO, 1974, 10 (03): : 85 - 89
  • [7] Construction of a minimax solution for an eikonal-type equation
    Lebedev, P. D.
    Uspenskii, A. A.
    Ushakov, V. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2008, 14 (02): : 182 - 191
  • [8] VALIDITY OF EIKONAL-TYPE APPROXIMATIONS FOR POTENTIAL SCATTERING
    KUJAWSKI, E
    PHYSICAL REVIEW D, 1971, 4 (08): : 2573 - &
  • [9] DOES MULTIPLE REGGEON EXCHANGE PRODUCE AN EIKONAL-TYPE FORMULA
    MUZINICH, IJ
    TIKTOPOU.G
    TREIMAN, SB
    PHYSICAL REVIEW D, 1971, 3 (04): : 1041 - &
  • [10] The construction of singular curves for generalized solutions of eikonal-type equations with a curvature break in the boundary of the boundary set
    Uspenskii, A. A.
    Lebedev, P. D.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2016, 22 (01): : 282 - 293