Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation

被引:0
|
作者
Paola Causin
Giovanna Guidoboni
Francesca Malgaroli
Riccardo Sacco
Alon Harris
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica “F. Enriques”
[2] Indiana University - Purdue University Indianapolis,Department of Mathematical Sciences
[3] University of Strasbourg,Institut de Recherche en Mathématique, Interactions et Applications (IRMIA)
[4] Indiana University School of Medicine,Eugene and Marilyn Glick Eye Institute
[5] Politecnico di Milano,Dipartimento di Matematica
关键词
Retinal microcirculation; Ocular blood flow mechanics ; Oxygen in blood; Oxygen in tissue; Capillary plexi model; Mass transport; Multiscale model;
D O I
暂无
中图分类号
学科分类号
摘要
The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen (O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document}) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} tension at the level of the retinal ganglion cells; and (3) arterial O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} permeability has a strong influence on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} saturation in the retinal arterioles.
引用
收藏
页码:525 / 542
页数:17
相关论文
共 50 条
  • [31] Mathematical modeling and numerical simulation technique for selected heavy metal transport in MSW dumpsite
    Usoh, G. A.
    Ahaneku, Isiguzo Edwin
    Ugwu, E. C.
    Sam, E. O.
    Itam, D. H.
    Alaneme, George Uwadiegwu
    Ndamzi, T. C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [32] Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column
    Scheibe, Timothy D.
    Perkins, William A.
    Richmond, Marshall C.
    McKinley, Matthew I.
    Romero-Gomez, Pedro D. J.
    Oostrom, Mart
    Wietsma, Thomas W.
    Serkowski, John A.
    Zachara, John M.
    WATER RESOURCES RESEARCH, 2015, 51 (02) : 1023 - 1035
  • [33] Modeling and numerical simulation of blood flow using the theory of interacting continua
    Massoudi, Mehrdad
    Kim, Jeongho
    Antaki, James F.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (05) : 506 - 520
  • [34] Geometric modeling and numerical simulation of the blood flow in human arterial system
    Zhu, Chengming
    Li, Xuemin
    Lin, Han
    Zhong, Zhanrong
    Du, Ruxu
    Wang, Yeping
    2007 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS, VOLS 1-5, 2007, : 623 - 627
  • [35] MATHEMATICAL MODELING AND NUMERICAL SIMULATION OF TWO-PHASE FLOW PROBLEMS AT PORE SCALE
    Luna, Paula
    Hidalgo, Arturo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, : 79 - 97
  • [36] Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs
    Lin, Ching-Long
    Tawhai, Merryn H.
    Hoffman, Eric A.
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2013, 5 (05) : 643 - 655
  • [37] Numerical analysis of blood flow through a stenosed artery using a coupled multiscale simulation method
    Shim, EB
    Kamm, RD
    Heldt, T
    Mark, RG
    COMPUTERS IN CARDIOLOGY 2000, VOL 27, 2000, 27 : 219 - 222
  • [38] Mathematical Modelling and Numerical Simulation of Blood Flow through Stenosed Coronary Artery Bypass
    Poltem, D.
    Wiwatanapataphee, B.
    Wu, Y. H.
    PROCEEDINGS OF 2008 INTERNATIONAL SYMPOSIUM ON APPLIED COMPUTING AND COMPUTATIONAL SCIENCES: ADVANCES IN APPLIED COMPUTING AND COMPUTATIONAL SCIENCES, 2008, : 102 - 107
  • [39] Numerical Simulation of the Transport and Flow Problems in Perforated Domains Using Generalized Multiscale Finite Element Method
    Alekseev, V.
    Gavrileva, U.
    Spiridonov, D.
    Tyrylgin, A.
    Vasilyeva, M.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES (AMITANS'18), 2018, 2025
  • [40] One-Dimensional Blood Flow with Discontinuous Properties and Transport: Mathematical Analysis and Numerical Schemes
    Spilimbergo, Alessandra
    Toro, Eleuterio F.
    Muller, Lucas O.
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (03) : 649 - 697