Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation

被引:0
|
作者
Paola Causin
Giovanna Guidoboni
Francesca Malgaroli
Riccardo Sacco
Alon Harris
机构
[1] Università degli Studi di Milano,Dipartimento di Matematica “F. Enriques”
[2] Indiana University - Purdue University Indianapolis,Department of Mathematical Sciences
[3] University of Strasbourg,Institut de Recherche en Mathématique, Interactions et Applications (IRMIA)
[4] Indiana University School of Medicine,Eugene and Marilyn Glick Eye Institute
[5] Politecnico di Milano,Dipartimento di Matematica
关键词
Retinal microcirculation; Ocular blood flow mechanics ; Oxygen in blood; Oxygen in tissue; Capillary plexi model; Mass transport; Multiscale model;
D O I
暂无
中图分类号
学科分类号
摘要
The scientific community continues to accrue evidence that blood flow alterations and ischemic conditions in the retina play an important role in the pathogenesis of ocular diseases. Many factors influence retinal hemodynamics and tissue oxygenation, including blood pressure, blood rheology, oxygen arterial permeability and tissue metabolic demand. Since the influence of these factors on the retinal circulation is difficult to isolate in vivo, we propose here a novel mathematical and computational model describing the coupling between blood flow mechanics and oxygen (O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document}) transport in the retina. Albeit in a simplified manner, the model accounts for the three-dimensional anatomical structure of the retina, consisting in a layered tissue nourished by an arteriolar/venular network laying on the surface proximal to the vitreous. Capillary plexi, originating from terminal arterioles and converging into smaller venules, are embedded in two distinct tissue layers. Arteriolar and venular networks are represented by fractal trees, whereas capillary plexi are represented using a simplified lumped description. In the model, O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} is transported along the vasculature and delivered to the tissue at a rate that depends on the metabolic demand of the various tissue layers. First, the model is validated against available experimental results to identify baseline conditions. Then, a sensitivity analysis is performed to quantify the influence of blood pressure, blood rheology, oxygen arterial permeability and tissue oxygen demand on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} distribution within the blood vessels and in the tissue. This analysis shows that: (1) systemic arterial blood pressure has a strong influence on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} profiles in both blood and tissue; (2) plasma viscosity and metabolic consumption rates have a strong influence on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} tension at the level of the retinal ganglion cells; and (3) arterial O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} permeability has a strong influence on the O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {O}_2$$\end{document} saturation in the retinal arterioles.
引用
收藏
页码:525 / 542
页数:17
相关论文
共 50 条
  • [1] Blood flow mechanics and oxygen transport and delivery in the retinal microcirculation: multiscale mathematical modeling and numerical simulation
    Causin, Paola
    Guidoboni, Giovanna
    Malgaroli, Francesca
    Sacco, Riccardo
    Harris, Alon
    BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2016, 15 (03) : 525 - 542
  • [2] Some results of mathematical modeling of microcirculation blood flow
    Kalion, VA
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIII, PROCEEDINGS: CONCEPTS AND APPLICATIONS OF SYSTEMICS, CYBERNETICS AND INFORMATICS III, 2002, : 487 - 487
  • [3] Mathematical and Numerical Modeling of Flow and Transport
    Sun, Shuyu
    Jenkins, Eleanor W.
    Chen, Zhangxing
    Geiser, Juergen
    JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [4] Multiscale modeling and simulation of brain blood flow
    Perdikaris, Paris
    Grinberg, Leopold
    Karniadakis, George Em
    PHYSICS OF FLUIDS, 2016, 28 (02)
  • [5] Mathematical and Numerical Modeling of Flow and Transport 2012
    Sun, Shuyu
    El-Amin, Mohamed Fathy
    Chen, Zhangxing
    Kanayama, Hiroshi
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [6] Mathematical and Numerical Modeling of Flow and Transport 2013
    Sun, Shuyu
    El-Amin, Mohamed Fathy
    Yu, Bo
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [7] Multiscale Modeling of Red Blood Cell Mechanics and Blood Flow in Malaria
    Fedosov, Dmitry A.
    Lei, Huan
    Caswell, Bruce
    Suresh, Subra
    Karniadakis, George E.
    PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (12)
  • [8] Numerical simulation of effect of convection-diffusion on oxygen transport in microcirculation
    N. Zhao
    K. Iramina
    Applied Mathematics and Mechanics, 2015, 36 : 179 - 200
  • [9] Numerical simulation of effect of convection-diffusion on oxygen transport in microcirculation
    Zhao, N.
    Iramina, K.
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2015, 36 (02) : 179 - 200
  • [10] Numerical simulation of effect of convection-diffusion on oxygen transport in microcirculation
    N.ZHAO
    K.IRAMINA
    Applied Mathematics and Mechanics(English Edition), 2015, 36 (02) : 179 - 200