Exceptional cases of Terai’s conjecture on Diophantine equations

被引:0
|
作者
Takafumi Miyazaki
机构
[1] Tokyo Metropolitan University,Department of Mathematics and Information Sciences
来源
Archiv der Mathematik | 2010年 / 95卷
关键词
Primary 11D61; Secondary 11A07; Exponential Diophantine equations; Terai’s conjecture;
D O I
暂无
中图分类号
学科分类号
摘要
Let a, b, c be relatively prime positive integers such that ap + bq = cr for fixed integers p, q, r ≥ 2. Terai conjectured that the equation ax + by = cz in positive integers has only the solution (x, y, z) = (p, q, r) except for specific cases. In this paper, we consider the case q = r = 2 and give some results related to exceptional cases.
引用
收藏
页码:519 / 527
页数:8
相关论文
共 50 条
  • [41] On Lusztig's conjecture for connected and disconnected exceptional groups
    Brunat, Olivier
    JOURNAL OF ALGEBRA, 2007, 316 (01) : 303 - 325
  • [42] ON THE GEOMETRY OF THIN EXCEPTIONAL SETS IN MANIN'S CONJECTURE
    Lehmann, Brian
    Tanimoto, Sho
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (15) : 2815 - 2869
  • [43] Solving diophantine equations by Baker's theory
    Gyóry, K
    PANORAMA IN NUMBER THEORY OR THE VIEW FROM BAKER'S GARDEN, 2002, : 38 - 72
  • [44] Approximate methods for singular integral equations in exceptional cases
    Boikov, IV
    Kudryashova, NY
    DIFFERENTIAL EQUATIONS, 2000, 36 (09) : 1360 - 1369
  • [45] Approximate methods for singular integral equations in exceptional cases
    I. V. Boikov
    N. Yu. Kudryashova
    Differential Equations, 2000, 36 : 1360 - 1369
  • [46] DIOPHANTINE EQUATIONS
    SRINIVAS, V
    CURRENT SCIENCE, 1990, 59 (12): : 589 - 594
  • [47] DIOPHANTINE EQUATIONS
    OPPENHEIM, A
    AMERICAN MATHEMATICAL MONTHLY, 1961, 68 (01): : 71 - &
  • [48] ON THE DIOPHANTINE EQUATIONS
    Chotchaisthit, Somchit
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2014, 34 (01): : 27 - 38
  • [49] DIOPHANTINE EQUATIONS
    KUROSAKA, RT
    BYTE, 1986, 11 (03): : 343 - &
  • [50] DIOPHANTINE EQUATIONS
    FOSTER, LL
    ALEX, LJ
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (01): : 62 - 62