Soliton dynamics for a nonintegrable model of light-colloid interactive fluids

被引:0
|
作者
Yu-Jie Feng
Yi-Tian Gao
Xin Yu
机构
[1] Beijing University of Aeronautics and Astronautics,Ministry
来源
Nonlinear Dynamics | 2018年 / 91卷
关键词
Soliton interactions; Nonintegrable model; Variational method; Colloidal suspension;
D O I
暂无
中图分类号
学科分类号
摘要
A nonintegrable model with the super-Kerr nonlinearity is investigated, which describes the light-matter interactions in a fluidic suspension of colloidal nanoparticles. Existence of the solitons with semi-analytic forms is shown for this model via the variational method. Numerical simulation is performed to demonstrate the good accordance with the variational analysis. Soliton interactions and soliton bound states are discussed in both the homogeneous and inhomogeneous media. In particular, inelastic interactions of two solitons are presented, and we find that there is an energy distribution P±\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_\pm $$\end{document}, which has a dependence with the velocity of the high-energy solitons. Simulations also reveal that the maximum value of P-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_-$$\end{document} relates with the soliton energy and the model parameter β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document}. Moreover, two different patterns of the three-soliton interactions are depicted as manifestation of the nonintegrability.
引用
收藏
页码:29 / 38
页数:9
相关论文
共 50 条
  • [31] Dynamics of the dispersion of a pair of soliton pulses in fiber light-guides with losses
    Shcherbakov, AS
    Andreeva, EI
    PISMA V ZHURNAL TEKHNICHESKOI FIZIKI, 1995, 21 (07): : 6 - 11
  • [32] Colloid dynamics near phase transition: A model for the relaxation of concentrated layers
    Ferreira, Adriana
    Abbas, Micheline
    Carvin, Philippe
    Bacchin, Patrice
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 640
  • [33] Mathematical model of turbulence based on the dynamics of two fluids
    Malikov, Z.
    APPLIED MATHEMATICAL MODELLING, 2020, 82 : 409 - 436
  • [34] MOLECULAR-DYNAMICS OF FLUIDS - THE GAUSSIAN OVERLAP MODEL
    KABADI, VN
    STEELE, WA
    BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1985, 89 (01): : 2 - 9
  • [35] INTERACTIVE COMPUTER MODEL OF DYNAMICS OF ASSETS AND LIABILITIES OF A BANK
    Alekseev, I., V
    Selyutin, V. V.
    TERRA ECONOMICUS, 2011, 9 (04): : 42 - 47
  • [36] Exploring the dynamics of the Kelvin-Helmholtz instability in paraxial fluids of light
    Ferreira, Tiago D.
    Garwola, Jakub
    Silva, Nuno A.
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [37] Soliton dynamics in a 2D lattice model with nonlinear interactions
    Ioannidou, T
    Pouget, J
    Aifantis, E
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (03): : 643 - 652
  • [38] A SOLITON BAG MODEL WITH SU(2)XSU(2) CHIRAL DYNAMICS
    HWANG, WYP
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (01): : 36 - 36
  • [39] A SOLITON BAG MODEL WITH SU(2)XSU(2) CHIRAL DYNAMICS
    HWANG, WYP
    PHYSICS LETTERS B, 1982, 116 (01) : 37 - 40
  • [40] Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity
    Tabi, Conrad Bertrand
    Mohamadou, Alidou
    Kofane, Timoleon Crepin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2008, 5 (01) : 205 - 216