A lightweight scheme for multi-focus image fusion

被引:1
|
作者
Xin Jin
Jingyu Hou
Rencan Nie
Shaowen Yao
Dongming Zhou
Qian Jiang
Kangjian He
机构
[1] Yunnan University,School of Information
[2] Deakin University,School of Information Technology
[3] Yunnan University,School of Software
来源
关键词
Image processing; Image fusion; Pulse coupled neural networks; Laplacian pyramid transform; Spatial frequency;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of multi-focus image fusion is to fuse the images taken from the same scene with different focuses so that we can obtain a resultant image with all objects in focus. However, the most existing techniques in many cases cannot gain good fusion performance and acceptable complexity simultaneously. In order to improve image fusion efficiency and performance, we propose a lightweight multi-focus image fusion scheme based on Laplacian pyramid transform (LPT) and adaptive pulse coupled neural networks-local spatial frequency (PCNN-LSF), and it only needs to deal with fewer sub-images than common methods. The proposed scheme employs LPT to decompose a source image into the corresponding constituent sub-images. Spatial frequency (SF) is calculated to adjust the linking strength β of PCNN according to the gradient features of the sub-images. Then oscillation frequency graph (OFG) of the sub-images is generated by PCNN model. Local spatial frequency (LSF) of the OFG is calculated as the key step to fuse the sub-images. Incorporating LSF of the OFG into the fusion scheme (LSF of the OFG represents the information of its regional features); it can effectively describe the detailed information of the sub-images. LSF can enhance the features of OFG and makes it easy to extract high quality coefficient of the sub-image. The experiments indicate that the proposed scheme achieves good fusion effect and is more efficient than other commonly used image fusion algorithms.
引用
收藏
页码:23501 / 23527
页数:26
相关论文
共 50 条
  • [31] A CRYSTALVIEW ON MULTI-FOCUS IMAGE FUSION METHODS
    Prasad, K. H. K.
    Babu, S. B. G. Tilak
    Krishna, R. V. V.
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 669 - 674
  • [32] Ensemble of CNN for multi-focus image fusion
    Amin-Naji, Mostafa
    Aghagolzadeh, Ali
    Ezoji, Mehdi
    INFORMATION FUSION, 2019, 51 : 201 - 214
  • [33] A Novel Fusion Algorithm for Multi-focus Image
    Wang Hongmei
    Nie Cong
    Li Yanjun
    Zhang Ke
    Chen Lihua
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL IV, 2010, : 396 - 399
  • [34] Exploiting Superpixels for Multi-Focus Image Fusion
    Ilyas, Areeba
    Farid, Muhammad Shahid
    Khan, Muhammad Hassan
    Grzegorzek, Marcin
    ENTROPY, 2021, 23 (02) : 1 - 22
  • [35] A Survey of Multi-Focus Image Fusion Methods
    Zhou, Youyong
    Yu, Lingjie
    Zhi, Chao
    Huang, Chuwen
    Wang, Shuai
    Zhu, Mengqiu
    Ke, Zhenxia
    Gao, Zhongyuan
    Zhang, Yuming
    Fu, Sida
    APPLIED SCIENCES-BASEL, 2022, 12 (12):
  • [36] Multi-focus image fusion techniques: a survey
    Bhat, Shiveta
    Koundal, Deepika
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (08) : 5735 - 5787
  • [37] A Novel Fusion Algorithm for Multi-focus Image
    Wang Hongmei
    Nie Cong
    Li Yanjun
    Zhang Ke
    Chen Lihua
    APPLIED INFORMATICS AND COMMUNICATION, PT 4, 2011, 227 : 641 - +
  • [38] Multi-focus image fusion with dense SIFT
    Liu, Yu
    Liu, Shuping
    Wang, Zengfu
    INFORMATION FUSION, 2015, 23 : 139 - 155
  • [39] Focus Relationship Perception for Unsupervised Multi-Focus Image Fusion
    Liu, Jinyang
    Li, Shutao
    Dian, Renwei
    Song, Ze
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 6155 - 6165
  • [40] Multi-focus Image Fusion with Cooperative Image Multiscale Decomposition
    Tan, Yueqi
    Yang, Bin
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 177 - 188