Non-autonomous semilinear evolution equations with almost sectorial operators

被引:0
|
作者
Alexandre N. Carvalho
Tomasz Dlotko
Marcelo J. D. Nascimento
机构
[1] Universidade de São Paulo-Campus de São Carlos,Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação
[2] Silesian University,Institute of Mathematics
来源
关键词
35A07; 37B55; 35K90; Non-autonomous semilinear parabolic problems; local existence; evolution processes of growth α; domains with a handle;
D O I
暂无
中图分类号
学科分类号
摘要
Inspired by the theory of semigroups of growth α, we construct an evolution process of growth α. The abstract theory is applied to study semilinear singular non-autonomous parabolic problems. We prove that, under natural assumptions, a reasonable concept of solution can be given to such semilinear singularly non-autonomous problems. Applications are considered to non-autonomous parabolic problems in space of Hölder continuous functions and to a parabolic problem in a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega \subset {\mathbb{R}}^n$$\end{document} with a one dimensional handle.
引用
收藏
页码:631 / 659
页数:28
相关论文
共 50 条
  • [41] Existence of Attractive Solutions for Hilfer Fractional Evolution Equations with Almost Sectorial Operators
    Zhou, Mian
    Ahmad, Bashir
    Zhou, Yong
    [J]. SYMMETRY-BASEL, 2022, 14 (02):
  • [42] Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators
    Bedi, Pallavi
    Kumar, Anoop
    Abdeljawad, Thabet
    Khan, Zareen A.
    Khan, Aziz
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [43] Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators
    Pallavi Bedi
    Anoop Kumar
    Thabet Abdeljawad
    Zareen A. Khan
    Aziz Khan
    [J]. Advances in Difference Equations, 2020
  • [44] Analysis and Numerical Solutions for Fractional Stochastic Evolution Equations With Almost Sectorial Operators
    Ding, Xiao-Li
    Nieto, Juan J.
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2019, 14 (09):
  • [45] INFINITE INTERVAL PROBLEMS FOR HILFER FRACTIONAL EVOLUTION EQUATIONS WITH ALMOST SECTORIAL OPERATORS
    Zhou, Mian
    Liang, Yong
    Zhou, Yong
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 52 (06) : 2257 - 2272
  • [46] On the maximal regularity for perturbed autonomous and non-autonomous evolution equations
    Ahmed Amansag
    Hamid Bounit
    Abderrahim Driouich
    Said Hadd
    [J]. Journal of Evolution Equations, 2020, 20 : 165 - 190
  • [47] On the maximal regularity for perturbed autonomous and non-autonomous evolution equations
    Amansag, Ahmed
    Bounit, Hamid
    Driouich, Abderrahim
    Hadd, Said
    [J]. JOURNAL OF EVOLUTION EQUATIONS, 2020, 20 (01) : 165 - 190
  • [48] Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn
    Ambrosetti, Antonio
    Cerami, Giovanna
    Ruiz, David
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (11) : 2816 - 2845
  • [49] Hilfer Fractional Differential Equations with Almost Sectorial Operators
    Jaiswal, Anjali
    Bahuguna, D.
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2023, 31 (02) : 301 - 317
  • [50] Almost automorphic and almost periodic dynamics for quasimonotone non-autonomous functional differential equations
    Novo S.
    Núñez C.
    Obaya R.
    [J]. Journal of Dynamics and Differential Equations, 2005, 17 (3) : 589 - 619