Stably embedded submodels of Henselian valued fields

被引:0
|
作者
Pierre Touchard
机构
[1] KU Leuven: Katholieke Universiteit Leuven,
来源
关键词
Valued fields; Model theory; Stable embeddedness; Primary 03C45; Secondary 03C60; 12J10;
D O I
暂无
中图分类号
学科分类号
摘要
We show a transfer principle for the property that all types realised in a given elementary extension are definable. It can be written as follows: a Henselian valued field is stably embedded in an elementary extension if and only if its value group is stably embedded in its corresponding extension, its residue field is stably embedded in its corresponding extension, and the extension of valued fields satisfies a certain algebraic condition. We show for instance that all types over the Hahn field R((Z))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}((\mathbb {Z}))$$\end{document} are definable. Similarly, all types over the quotient field of the Witt ring W(Fpalg)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W(\mathbb {F}_p^{\text {alg}})$$\end{document} are definable. This extends a work of Cubides and Delon and of Cubides and Ye.
引用
收藏
页码:279 / 315
页数:36
相关论文
共 50 条
  • [41] On Brown's constant associated with irreducible polynomials over henselian valued fields
    Khanduja, Sudesh K.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (12) : 2294 - 2300
  • [42] A CLOSEDNESS THEOREM AND APPLICATIONS IN GEOMETRY OF RATIONAL POINTS OVER HENSELIAN VALUED FIELDS
    Nowak, Krzysztof Jan
    JOURNAL OF SINGULARITIES, 2020, 21 : 212 - 233
  • [43] A study of irreducible polynomials over henselian valued fields via distinguished pairs
    Aghigh, K.
    Bishnoi, A.
    Kumar, S.
    Khanduja, S. K.
    VALUATION THEORY IN INTERACTION, 2014, : 1 - +
  • [44] Some results of algebraic geometry over Henselian rank one valued fields
    Nowak, Krzysztof Jan
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (01): : 455 - 495
  • [45] Some results of algebraic geometry over Henselian rank one valued fields
    Krzysztof Jan Nowak
    Selecta Mathematica, 2017, 23 : 455 - 495
  • [46] Uniformly defining valuation rings in Henselian valued fields with finite or pseudo-finite residue fields
    Cluckers, Raf
    Derakhshan, Jamshid
    Leenknegt, Eva
    Macintyre, Angus
    ANNALS OF PURE AND APPLIED LOGIC, 2013, 164 (12) : 1236 - 1246
  • [47] Ω-algebras over Henselian discrete valued fields with real closed residue field
    Bazyeu, D. F.
    Van Geel, J.
    Yanchevskil, V. I.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (01) : 51 - 71
  • [48] On a class of Henselian fields
    Popescu, Sever Angel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (02): : 193 - 198
  • [49] TOPOLOGICALLY HENSELIAN FIELDS
    BERRONDO, F
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (10): : 305 - 307
  • [50] A NOTE ON HENSELIAN FIELDS
    RIBENBOI.P
    CANADIAN MATHEMATICAL BULLETIN, 1966, 9 (05): : 682 - &