Bounds for the extreme eigenvalues of the laplacian and signless laplacian of a graph

被引:0
|
作者
Kolotilina L.Y. [1 ]
机构
[1] St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg
关键词
Lower Bound; Spectral Radius; Hermitian Matrix; Extreme Eigenvalue; Laplacian Spectral Radius;
D O I
10.1007/s10958-012-0788-1
中图分类号
学科分类号
摘要
The paper suggests a new approach to deriving lower bounds for the Laplacian spectral radius and upper bounds for the smallest eigenvalve of the signless Laplacian of an undirected simple r-partite graph on n vertices, 2 ≤ r ≤ n. The approach is based on inequalities for the extreme eigenvalves of a block-partitioned Hermitian matrix, established earlier, and on the Rayleigh principle. Specific lower and upper bounds generalizing known results and extending them from r = 2 to r ≥ 2 are considered, and the cases where these bounds are sharp are described. Bibliography: 13 titles. © 2012 Springer Science+Business Media, Inc.
引用
下载
收藏
页码:803 / 813
页数:10
相关论文
共 50 条
  • [41] EIGENVALUE BOUNDS FOR THE SIGNLESS LAPLACIAN
    Cvetkovic, Dragos
    Rowlinson, Peter
    Simic, Slobodan
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2007, 81 (95): : 11 - 27
  • [42] Bounds for the signless Laplacian energy
    Abreu, Nair
    Cardoso, Domingos M.
    Gutman, Ivan
    Martins, Enide A.
    Robbiano, Maria
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) : 2365 - 2374
  • [43] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Ji-Ming Guo
    Jianxi Li
    Wai Chee Shiu
    Czechoslovak Mathematical Journal, 2013, 63 : 701 - 720
  • [44] On the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph
    Guo, Ji-Ming
    Li, Jianxi
    Shiu, Wai Chee
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 701 - 720
  • [45] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Changjiang Bu
    Yamin Fan
    Jiang Zhou
    Frontiers of Mathematics in China, 2016, 11 : 511 - 520
  • [46] The maximum clique and the signless Laplacian eigenvalues
    Jianping Liu
    Bolian Liu
    Czechoslovak Mathematical Journal, 2008, 58 : 1233 - 1240
  • [47] Signless Laplacian spectrum of a graph
    Ghodrati, Amir Hossein
    Hosseinzadeh, Mohammad Ali
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 682 : 257 - 267
  • [48] On the distance signless Laplacian of a graph
    Aouchiche, Mustapha
    Hansen, Pierre
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (06): : 1113 - 1123
  • [49] Laplacian and signless Laplacian Z-eigenvalues of uniform hypergraphs
    Bu, Changjiang
    Fan, Yamin
    Zhou, Jiang
    FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 511 - 520
  • [50] Distance signless Laplacian eigenvalues of graphs
    Kinkar Chandra Das
    Huiqiu Lin
    Jiming Guo
    Frontiers of Mathematics in China, 2019, 14 : 693 - 713