Error Estimates for Spectral Semi-Galerkin Approximations of Incompressible Asymmetric Fluids with Variable Density

被引:0
|
作者
Felipe W. Cruz
Pablo Braz e Silva
机构
[1] Universidade Federal de Pernambuco,Departamento de Matemática
关键词
Semi-Galerkin approximations; Error estimate uniform in time; Asymmetric fluids; 65M60; 76M22; 65M15; 35Q30; 35Q35;
D O I
暂无
中图分类号
学科分类号
摘要
We consider spectral semi-Galerkin approximations for global strong solutions of the equations for variable density asymmetric incompressible fluids in a bounded domain Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} of R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}. We prove an optimal uniform in time error estimate in the H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{H}}^{1}$$\end{document} norm for approximations of both the linear and angular velocity of particles of the fluid. We also derive an error bound for approximations of the density in some Lebesgue spaces Lr(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{r}(\Omega )$$\end{document}.
引用
收藏
相关论文
共 50 条