Improved user-private information retrieval via finite geometry

被引:0
|
作者
Oliver W. Gnilke
Marcus Greferath
Camilla Hollanti
Guillermo Nuñez Ponasso
Padraig Ó Catháin
Eric Swartz
机构
[1] Aalto University,
[2] Aalto University and Affiliated with the Technical University of Munich via a Hans Fischer Fellowship,undefined
[3] Worcester Polytechnic Institute,undefined
[4] College of William & Mary,undefined
来源
关键词
Privacy; Communication; Finite geometry; 94A99; 05B25;
D O I
暂无
中图分类号
学科分类号
摘要
In a user-private information retrieval (UPIR) scheme, a set of users collaborate to retrieve files from a database without revealing to observers which participant in the scheme requested the file. To achieve privacy, users retrieve files from the database in response to anonymous requests posted to message spaces; assuming that each message space can be accessed by a subset of the participants in the scheme. Privacy with respect to the database is easily achieved, but privacy with respect to coalitions of other users within the scheme is sensitive to the choice of incidence structure determining which users can access each message space. Earlier schemes were based on pairwise balanced designs and symmetric designs, and involved at most one step of message passing to retrieve a file. We propose a new class of UPIR schemes based on generalised quadrangles (GQs), which need up to two steps of message passing in each file retrieval. We introduce a new message passing protocol in which messages are encrypted. Even using this protocol, previously proposed schemes are compromised by finite coalitions of users. We construct a family of GQ-UPIR schemes which maintain privacy with high probability even when O(n1/2-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{1/2-\epsilon })$$\end{document} users collude, where n is the total number of users in the scheme. We also show that a UPIR scheme based on any family of generalised quadrangles is secure against coalitions of O(n1/4-ϵ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{1/4-\epsilon })$$\end{document} users.
引用
收藏
页码:665 / 677
页数:12
相关论文
共 50 条
  • [21] Improved lower bounds for locally decodable codes and private information retrieval
    Wehner, S
    de Wolf, R
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2005, 3580 : 1424 - 1436
  • [22] Improved Private Information Retrieval for Coded Storage From Code Decomposition
    Lin, Hsuan-Yin
    Kumar, Siddhartha
    Rosnes, Eirik
    Graell i Amat, Alexandre
    [J]. 2019 IEEE INFORMATION THEORY WORKSHOP (ITW), 2019, : 729 - 733
  • [23] Private Information Retrieval With Side Information
    Kadhe, Swanand
    Garcia, Brenden
    Heidarzadeh, Anoosheh
    El Rouayheb, Salim
    Sprintson, Alex
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (04) : 2032 - 2043
  • [24] Improved Neural Networks Based on Mutual Information via Information Geometry
    Wang, Meng
    Xiao, Chuang-Bai
    Ning, Zhen-Hu
    Yu, Jing
    Zhang, Ya-Hao
    Pang, Jin
    [J]. ALGORITHMS, 2019, 12 (05)
  • [25] Private Information Retrieval with Partially Known Private Side Information
    Wei, Yi-Peng
    Banawan, Karim
    Ulukus, Sennur
    [J]. 2018 52ND ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2018,
  • [26] Enabling Privacy Preserving Mobile Advertising via Private Information Retrieval
    Ullah, Imdad
    Sarwar, Babil Golam
    Boreli, Roksana
    Kanhere, Salil S.
    Katzenbeisser, Stefan
    Hollick, Matthias
    [J]. 2017 IEEE 42ND CONFERENCE ON LOCAL COMPUTER NETWORKS (LCN), 2017, : 347 - 355
  • [27] Authenticated private information retrieval
    Colombo, Simone
    Nikitin, Kirill
    Corrigan-Gibbs, Henry
    Wu, David J.
    Ford, Bryan
    [J]. PROCEEDINGS OF THE 32ND USENIX SECURITY SYMPOSIUM, 2023, : 3835 - 3851
  • [28] The Capacity of Private Information Retrieval
    Sun, Hua
    Jafar, Syed A.
    [J]. 2016 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2016,
  • [29] Verifiable Private Information Retrieval
    Ben-David, Shany
    Kalai, Yael Tauman
    Paneth, Omer
    [J]. THEORY OF CRYPTOGRAPHY, TCC 2022, PT III, 2022, 13749 : 3 - 32
  • [30] Committed Private Information Retrieval
    Cao, Quang
    Tran, Hong Yen
    Dau, Son Hoang
    Yi, Xun
    Viterbo, Emanuele
    Feng, Chen
    Huang, Yu-Chih
    Zhu, Jingge
    Kruglik, Stanislav
    Kiah, Han Mao
    [J]. COMPUTER SECURITY - ESORICS 2023, PT I, 2024, 14344 : 393 - 413