Classification of brain activation via spatial Bayesian variable selection in fMRI regression

被引:0
|
作者
Stefanie Kalus
Philipp G. Sämann
Ludwig Fahrmeir
机构
[1] Ludwig-Maximilians-University,Department of Statistics
[2] Max Planck Institute of Psychiatry,undefined
关键词
Functional magnetic resonance imaging; Bayesian image analysis; Human brain mapping; Probit link; Markov random field priors; Markov chain Monte Carlo; 62F07;
D O I
暂无
中图分类号
学科分类号
摘要
Functional magnetic resonance imaging (fMRI) is the most popular technique in human brain mapping, with statistical parametric mapping (SPM) as a classical benchmark tool for detecting brain activity. Smith and Fahrmeir (J Am Stat Assoc 102(478):417–431, 2007) proposed a competing method based on a spatial Bayesian variable selection in voxelwise linear regressions, with an Ising prior for latent activation indicators. In this article, we alternatively link activation probabilities to two types of latent Gaussian Markov random fields (GMRFs) via a probit model. Statistical inference in resulting high-dimensional hierarchical models is based on Markov chain Monte Carlo approaches, providing posterior estimates of activation probabilities and enhancing formation of activation clusters. Three algorithms are proposed depending on GMRF type and update scheme. An application to an active acoustic oddball experiment and a simulation study show a substantial increase in sensitivity compared to existing fMRI activation detection methods like classical SPM and the Ising model.
引用
收藏
页码:63 / 83
页数:20
相关论文
共 50 条
  • [41] Spatial heterogeneity analysis of brain activation in fMRI
    Gupta, Lalit
    Besseling, Rene M. H.
    Overvliet, Geke M.
    Hofman, Paul A. M.
    de Louw, Anton
    Vaessen, Maarten J.
    Aldenkamp, Albert P.
    Ulman, Shrutin
    Jansen, Jacobus F. A.
    Backes, Walter H.
    [J]. NEUROIMAGE-CLINICAL, 2014, 5 : 266 - 276
  • [42] Spatial SVM for feature selection and fMRI activation detection
    Liang, Lichen
    Cherkassky, Vladimir
    Rottenberg, David A.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1463 - +
  • [43] Bayesian scale mixtures of normals linear regression and Bayesian quantile regression with big data and variable selection
    Chu, Yuanqi
    Yin, Zhouping
    Yu, Keming
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 428
  • [44] Comparison of Bayesian objective procedures for variable selection in linear regression
    Elías Moreno
    F. Javier Girón
    [J]. TEST, 2008, 17 : 472 - 490
  • [45] Bayesian Variable Selection Regression of Multivariate Responses for Group Data
    Liquet, B.
    Mengersen, K.
    Pettitt, A. N.
    Sutton, M.
    [J]. BAYESIAN ANALYSIS, 2017, 12 (04): : 1039 - 1067
  • [46] Bayesian Estimation of Prediction Error and Variable Selection in Linear Regression
    Neath, Andrew A.
    Cavanaugh, Joseph E.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2010, 78 (02) : 257 - 270
  • [47] Bayesian variable selection logistic regression with paired proteomic measurements
    Kakourou, Alexia
    Mertens, Bart
    [J]. BIOMETRICAL JOURNAL, 2018, 60 (05) : 1003 - 1020
  • [48] Comparison of Bayesian objective procedures for variable selection in linear regression
    Moreno, Elias
    Giron, F. Javier
    [J]. TEST, 2008, 17 (03) : 472 - 490
  • [49] Comparison of Bayesian objective procedures for variable selection in linear regression
    Moreno E.
    Girón F.J.
    [J]. TEST, 2008, 17 (3) : 491 - 492
  • [50] Bayesian variable selection and estimation in maximum entropy quantile regression
    Tu, Shiyi
    Wang, Min
    Sun, Xiaoqian
    [J]. JOURNAL OF APPLIED STATISTICS, 2017, 44 (02) : 253 - 269