The standard Gibbs energy of formation of Fe(II)Fe(III) hydroxide sulfate green rust

被引:0
|
作者
Karina Barbara Ayala-Luis
Christian Bender Koch
Hans Christian Bruun Hansen
机构
[1] University of Copenhagen,Department of Basic Sciences and Environment, Faculty of Life Sciences
来源
Clays and Clay Minerals | 2008年 / 56卷
关键词
Acid Titration; Gibbs Energy of Formation; Green Rust; Layered Double Hydroxides; Magnetite; Mössbauer Spectroscopy; Solubility Product;
D O I
暂无
中图分类号
学科分类号
摘要
Mixed FeIIFeIII hydroxides, commonly referred to as ‘green rusts’ (GRs), are important reactive phases in both man-made and natural geochemical systems. Determinations of the standard Gibbs energy of formation of GRs are needed to understand and predict the occurrence and possible reactions of GRs in these systems. Slow acid titration of crystalline green rust sulfate (GRSO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}$\end{document}) with the formation of magnetite was used as a novel method to determine the standard Gibbs energy of formation of GRSO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}$\end{document}, ΔfGo(GRSO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\rm{\Delta }}_{\rm{f}}}{G^{\rm{o}}}\left( {{\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}} \right)$\end{document}. Aqueous suspensions of GRSO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}$\end{document}, with pH slightly >8, were titrated slowly with 1 M H2SO4 until pH = 3 under strict anoxic conditions. Powder X-ray diffraction and Mössbauer analysis revealed that magnetite was the only solid phase formed during the initial part of the titration, where the equilibrium pH was maintained above 7.0. The ratio of Fe2+ release to consumption of protons confirmed the stoichiometry of dissolution of GRSO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}$\end{document} and the formation of magnetite at equilibrium conditions. The estimate of the absolute value of ΔfGo(GRSO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\rm{\Delta }}_{\rm{f}}}{G^{\rm{o}}}\left( {{\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}} \right)$\end{document} was −3819.43±6.44 kJ mol−1 + y × [ΔfGo(H2O(1))], where y is the number of interlayer water molecules per formula unit. The logarithm of the solubility product, log Ksp, was estimated to be −139.2±4.8 and is invariable with y. Using the new value for ΔfGo(GRSO4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${{\rm{\Delta }}_{\rm{f}}}{G^{\rm{o}}}\left( {{\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}} \right)$\end{document}, the reduction potentials of several GRSO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}$\end{document}-Fe oxide couples were evaluated, with the GRSO4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\rm{G}}{{\rm{R}}_{{\rm{S}}{{\rm{O}}_4}}}$\end{document}-magnetite half cell showing the smallest redox potential at pH 7 and free ion activities of 10−3.
引用
收藏
页码:633 / 644
页数:11
相关论文
共 50 条
  • [41] FORMATION OF ALUMINUM HYDROXIDE DOPED WITH FE(III) AND CR(III)
    VANDIJK, J
    JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1978, 40 (08): : 1609 - 1610
  • [42] Fe(II) Interactions with Smectites: Temporal Changes in Redox Reactivity and the Formation of Green Rust
    Jones, Adele M.
    Murphy, Cassandra A.
    Waite, T. David
    Collins, Richard N.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (21) : 12573 - 12582
  • [43] Magnetite vs. green rust: Effects of phosphate on the formation of Fe(II)-bearing secondary mineralization products resulting from the bioreduction of Fe(III) oxides
    O'Loughlin, Edward J.
    Gorski, Christopher A.
    Kemner, Kenneth M.
    Boyanov, Maxim I.
    Cook, Russell E.
    Latta, Drew E.
    Scherer, Michelle M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [44] Formation of Fe(III)-containing mackinawite from hydroxysulphate green rust by sulphate reducing bacteria
    Langumier, A.
    Sabot, R.
    Obame-Ndong, R.
    Jeannin, M.
    Sable, S.
    Refait, Ph.
    CORROSION SCIENCE, 2009, 51 (11) : 2694 - 2702
  • [45] Structure and stability of the Fe(II)-Fe(III) green rust "fougerite" mineral and its potential for reducing pollutants in soil solutions
    Génin, JMR
    Refait, P
    Bourrié, G
    Abdelmoula, M
    Trolard, F
    APPLIED GEOCHEMISTRY, 2001, 16 (05) : 559 - 570
  • [46] Evidence for the Fe(II)-Fe(III) Green Rust "Fougerite" mineral occurrence in a hydromorphic soil and its transformation with depth.
    Abdelmoula, M
    Trolard, F
    Bourrie, G
    Genin, JMR
    HYPERFINE INTERACTIONS, 1998, 112 (1-4): : 235 - 238
  • [47] FORMATION OF FE(II)1-FE(III)1 INTERMEDIATE GREEN COMPLEX ON OXIDATION OF FERROUS ION IN NEUTRAL AND SLIGHTLY ALKALINE SULFATE SOLUTIONS
    MISAWA, T
    HASHIMOT.K
    SHIMODAI.S
    JOURNAL OF INORGANIC & NUCLEAR CHEMISTRY, 1973, 35 (12): : 4167 - 4174
  • [48] Fe(II)/Fe(III) 'green rust' developed within ochreous coal mine drainage sediment in South Wales, UK
    Bearcock, J. M.
    Perkins, W. T.
    Dinelli, E.
    Wade, S. C.
    MINERALOGICAL MAGAZINE, 2006, 70 (06) : 731 - 741
  • [49] A RAPID METHOD FOR THE FORMATION OF FE(II),FE(III) HYDROXYCARBONATE
    TAYLOR, RM
    SCHWERTMANN, U
    FECHTER, H
    CLAY MINERALS, 1985, 20 (01) : 147 - 151
  • [50] THE PREPARATION AND THERMODYNAMIC PROPERTIES OF FE(II)-FE(III) HYDROXIDE-CARBONATE (GREEN-RUST-1) - POURBAIX DIAGRAM OF IRON IN CARBONATE-CONTAINING AQUEOUS-MEDIA
    DRISSI, SH
    REFAIT, P
    ABDELMOULA, M
    GENIN, JMR
    CORROSION SCIENCE, 1995, 37 (12) : 2025 - 2041