Probabilistic Analysis of the Grassmann Condition Number

被引:0
|
作者
Dennis Amelunxen
Peter Bürgisser
机构
[1] The University of Manchester,School of Mathematics
[2] Technische Universität Berlin,Institut für Mathematik
来源
Foundations of Computational Mathematics | 2015年 / 15卷
关键词
Convex programming; Perturbation; Condition number; Average analysis; Spherically convex sets; Grassmann manifold; Tube formulas; 90C25; 90C22; 90C31; 52A22; 52A55; 60D05;
D O I
暂无
中图分类号
学科分类号
摘要
We analyze the probability that a random m-dimensional linear subspace of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}^{n}$\end{document} both intersects a regular closed convex cone \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$C\subseteq\mathbb{R}^{n}$\end{document} and lies within distance α of an m-dimensional subspace not intersecting C (except at the origin). The result is expressed in terms of the spherical intrinsic volumes of the cone C. This allows us to perform an average analysis of the Grassmann condition number [inline-graphic not available: see fulltext] for the homogeneous convex feasibility problem ∃x∈C∖0:Ax=0. The Grassmann condition number is a geometric version of Renegar’s condition number, which we have introduced recently in Amelunxen and Bürgisser (SIAM J. Optim. 22(3):1029–1041 (2012)). We thus give the first average analysis of convex programming that is not restricted to linear programming. In particular, we prove that if the entries of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A\in\mathbb {R}^{m\times n}$\end{document} are chosen i.i.d. standard normal, then for any regular cone C, we have [inline-graphic not available: see fulltext]. The proofs rely on various techniques from Riemannian geometry applied to Grassmann manifolds.
引用
收藏
页码:3 / 51
页数:48
相关论文
共 50 条
  • [21] Probabilistic Condition Number Estimates for Real Polynomial Systems I: A Broader Family of Distributions
    Alperen A. Ergür
    Grigoris Paouris
    J. Maurice Rojas
    Foundations of Computational Mathematics, 2019, 19 : 131 - 157
  • [22] Probabilistic Condition Number Estimates for Real Polynomial Systems I: A Broader Family of Distributions
    Erguer, Alperen A.
    Paouris, Grigoris
    Rojas, J. Maurice
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2019, 19 (01) : 131 - 157
  • [23] Probabilistic collaborative representation on Grassmann manifold for image set classification
    Shuo Zhang
    Dong Wei
    Wenzhu Yan
    Quansen Sun
    Neural Computing and Applications, 2021, 33 : 2483 - 2496
  • [24] Probabilistic collaborative representation on Grassmann manifold for image set classification
    Zhang, Shuo
    Dong Wei
    Yan, Wenzhu
    Sun, Quansen
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (07): : 2483 - 2496
  • [25] A POSSIBLE WAY OF CONNECTING THE GRASSMANN VARIABLES AND THE NUMBER OF GENERATIONS
    HE, XG
    PHYSICAL REVIEW D, 1994, 49 (01): : 567 - 568
  • [26] Hermann Gunther Grassmann and the theory of hypercomplex number systems
    Schlote, KH
    HERMANN GUNTHER GRASSMANN (1809-1877): VISIONARY MATHEMATICIAN, SCIENTIST AND NEOHUMANIST SCHOLAR: PAPERS FROM A SESQUICENTENNIAL CONFERENCE, 1996, 187 : 165 - 173
  • [27] A nonlinear probabilistic method and contribution analysis for machine condition monitoring
    Yu, Jianbo
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 37 (1-2) : 293 - 314
  • [28] PERTURBATION ANALYSIS OF A CONDITION NUMBER FOR LINEAR-SYSTEMS
    LUO, ZQ
    TSENG, P
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1994, 15 (02) : 636 - 660
  • [29] Smooth Analysis of the Condition Number and the Least Singular Value
    Tao, Terence
    Vu, Van
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2009, 5687 : 714 - +
  • [30] Condition number analysis and preconditioning of the finite cell method
    de Prenter, F.
    Verhoosel, C. V.
    van Zwieten, G. J.
    van Brummelen, E. H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 316 : 297 - 327