Probing the Nekhoroshev Stability of Asteroids

被引:0
|
作者
Massimiliano Guzzo
Zoran Knežević
Andrea Milani
机构
[1] Università degli Studi di Padova,Dipartimento di Matematica Pura ed Applicata
[2] Astronomska opservatorija,Dipartimento di Matematica
[3] Università di Pisa,undefined
关键词
Nekhoroshev theorem; asteroids; long-term stability;
D O I
暂无
中图分类号
学科分类号
摘要
We apply the spectral formulation of the Nekhoroshev theorem to investigate the long-term stability of real main belt asteroids. We find numerical indication that some asteroids are in the so-called Nekhoroshev stability regime, that is they are on chaotic orbits but their motion is stable over very long times. We have analyzed the motion of bodies in different regions of the belt, to assess the sensitivity of our method. We found that it allows us to clearly discriminate between different dynamical regimes, such as the one described by the Nekhoroshev stability, the one well described by the KAM theory, and the unstable chaotic regime in which diffusion in phase space can be detected over time spans much shorter than the age of the solar system.
引用
收藏
页码:121 / 140
页数:19
相关论文
共 50 条
  • [41] Resonant orbit search and stability analysis for elongated asteroids
    Zhang, Yu-Hang
    Qian, Ying-Jing
    Li, Xu
    Yang, Xiao-Dong
    ASTRODYNAMICS, 2023, 7 (01) : 51 - 67
  • [42] Nikolai Nikolaevich Nekhoroshev (obituary)
    Abramov, A. M.
    Arnol'd, V. I.
    Bolsinov, A. V.
    Varchenko, A. N.
    Galgam, L.
    Zhilinskii, B. I.
    Il'yashenko, Yu S.
    Kozlov, V. V.
    Neishtadt, A. I.
    Piterbarg, V. I.
    Khovanskin, A. G.
    Yashchenko, V. V.
    RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (03) : 561 - 566
  • [43] The Steep Nekhoroshev's Theorem
    Guzzo, M.
    Chierchia, L.
    Benettin, G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (02) : 569 - 601
  • [44] The Steep Nekhoroshev’s Theorem
    M. Guzzo
    L. Chierchia
    G. Benettin
    Communications in Mathematical Physics, 2016, 342 : 569 - 601
  • [45] A generalization of Nekhoroshev’s theorem
    Larry Bates
    Richard Cushman
    Regular and Chaotic Dynamics, 2016, 21 : 639 - 642
  • [46] Resonant orbit search and stability analysis for elongated asteroids
    Yu-Hang Zhang
    Ying-Jing Qian
    Xu Li
    Xiao-Dong Yang
    Astrodynamics, 2023, 7 : 51 - 67
  • [47] A generalization of Nekhoroshev's theorem
    Bates, Larry
    Cushman, Richard
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 639 - 642
  • [48] A QUANTUM VERSION OF THE NEKHOROSHEV THEOREM
    MOSZYNSKI, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (08): : L443 - L448
  • [49] Nikolaí N. Nekhoroshev
    Alekseí V. Bolsinov
    Anatolií I. Nejshtadt
    Dmitrií A. Sadovskií
    Boris I. Zhilinskií
    Regular and Chaotic Dynamics, 2016, 21 : 593 - 598
  • [50] The Poincare-Nekhoroshev map
    Gaeta, G
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2003, 10 (01) : 51 - 64