Damage self-diagnoses feasibility of fiber-reinforced concrete structure

被引:0
|
作者
Chunyang Wang
Fuling Liu
机构
[1] Huazhong University of Science and Technology,School of Civil Engineering and Mechanics
[2] Henan University of Urban Construction,undefined
关键词
electrical conductivity; carbon fiber; concrete;
D O I
暂无
中图分类号
学科分类号
摘要
The seepage theory was used to explain the variation between the specific resistance of the carbon fiber reinforced cement concrete and the carbon fiber volume ratio. The electro-dynamic seepage was observed in the cement. The longer the carbon fiber is, the smaller the critical volume to produce the electro-dynamic seepage phenomenon will be. However, the forming and stirring process is harder. In general, the average length of carbon fiber is 5 mm. Under the condition of three-point bending load, the specific resistance changes with the loading process, and a good correlation could be obtained according to the load-deflection relationship. The experimental results reveal that the carbon fiber reinforced cement based composites can be used as sensors to self-diagnoses of the damage.
引用
收藏
页码:319 / 322
页数:3
相关论文
共 50 条
  • [31] Flexural Design of Fiber-Reinforced Concrete
    Soranakom, Chote
    Mobasher, Barzin
    ACI MATERIALS JOURNAL, 2009, 106 (05) : 461 - 469
  • [32] Mixture Design and Testing of Fiber-Reinforced Self-Consolidating Concrete
    Khayat, Kamal H.
    Kassimi, Fodhil
    Ghoddousi, Parviz
    ACI MATERIALS JOURNAL, 2014, 111 (02) : 143 - 151
  • [33] Lightweight panels of steel fiber-reinforced self-compacting concrete
    Barros, Joaquim
    Pereira, Eduardo
    Santos, Simao
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2007, 19 (04) : 295 - 304
  • [34] Underwater abrasion of steel fiber-reinforced self-compacting concrete
    Abid, Sallal R.
    Hilo, Ali N.
    Ayoob, Nadheer S.
    Daek, Yasir H.
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2019, 11
  • [35] EXPLOSIVE TESTING OF FIBER-REINFORCED CONCRETE
    ROBINS, PJ
    CALDERWOOD, RW
    CONCRETE, 1978, 12 (01): : 26 - 28
  • [36] Evaluating steel fiber-reinforced self-consolidating concrete performance
    da Silva, Gisele C. S.
    Christ, Roberto
    Pacheco, Fernanda
    de Souza, Camila F. N.
    Gil, Augusto M.
    Tutikian, Bernardo F.
    STRUCTURAL CONCRETE, 2020, 21 (01) : 448 - 457
  • [37] Impact resistance of steel fiber-reinforced self-compacting concrete
    Abid, S. R.
    Ali, S. H.
    Goaiz, H. A.
    Al-Gasham, T. S.
    Kadhim, A. L.
    MAGAZINE OF CIVIL ENGINEERING, 2021, 105 (05):
  • [38] Mechanical and durability evaluation of fiber-reinforced self-compacting concrete
    Yehia, Sherif
    Douba, AlaEddin
    Abdullahi, Omar
    Farrag, Sharef
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 121 : 120 - 133
  • [39] Fatigue Analysis of Plain and Fiber-Reinforced Self-Consolidating Concrete
    Goel, S.
    Singh, S. P.
    Singh, P.
    ACI MATERIALS JOURNAL, 2012, 109 (05) : 573 - 582
  • [40] Behavior of Magnetic Self-Compacting Polypropylene Fiber-Reinforced Concrete
    Ahmed, H. I.
    JOURNAL OF CONSTRUCTION ENGINEERING AND MANAGEMENT, 2023, 149 (03)