Let M = { 1, 2, . . . , n } and let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {V}=\{\,I \subseteq M: 1 \in I\,\}}$$\end{document} , where n is an integer greater than 1. Denote \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${M{\setminus}{I}}$$\end{document} by Ic for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${I \in \mathcal {V}.}$$\end{document} We investigate the solution of the following generalized quartic functional equation\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{array}{ll} \sum\limits_{I \in\mathcal {V}}f\, \left({\sum\limits_{i \in I}}a_ix_i-\sum\limits_{i \in I^c}a_ix_i\right) \, = \,2^{n-2} \sum\limits_{1\leq i < j \leq n}a^2_{i}a^2_{j} \left[f(x_{i}+x_{j})+f(x_{i}-x_{j})\right] \\ \qquad \qquad \qquad \quad\quad\quad \quad\quad\quad\quad +\,2^{n-1} \sum\limits^{n}_{i=1}a^2_{i} \left(a^2_{i}-\sum\limits^{n}_{\substack{{j=1}\\{j\neq i}}}a^2_{j}\right)f(x_{i}) \end{array}$$\end{document}in β-Banach modules on a Banach algebra, where \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${a_{1},\ldots, a_{n}\in \mathbb{Z}{\setminus}\{0\}}$$\end{document} with aℓ ≠ ±1 for all \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\ell \in \{1 , 2, \ldots ,\,n-1\}}$$\end{document} and an = 1. Moreover, using the fixed point method, we prove the generalized Hyers–Ulam stability of the above generalized quartic functional equation. Finally, we give an example that the generalized Hyers–Ulam stability does not work.