Fixed points and stability of functional equations in fuzzy ternary Banach algebras

被引:5
|
作者
Asgari, G. [1 ]
Cho, Y. J. [2 ,3 ]
Lee, Y. W. [4 ]
Gordji, M. Eshaghi [5 ]
机构
[1] Islamic Azad Univ, Dept Math, Aligoudarz Branch, Aligoudarz, Iran
[2] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[4] Daejeon Univ, Dept Comp Hacking & Informat Secur, Taejon 300716, South Korea
[5] Semnan Univ, Dept Math, Semnan, Iran
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam-Rassias stability; Diaz and Margolis contraction theorem; fuzzy ternary Banach algebra; ternary algebras; functional equations; ASTERISK-HOMOMORPHISMS; DERIVATIONS;
D O I
10.1186/1029-242X-2013-166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Diaz and Margolis fixed point theorem, we establish the generalized Hyers-Ulam-Rassias stability of the ternary homomorphisms and ternary derivations between fuzzy ternary Banach algebras associated to the following (m,n)-Cauchy-Jensen additive functional equation: (1 <= 1<...<im <= n 1 <= kj <= n k1ij,j is an element of{1,...,m})Sigma f(Sigma(m)(j=1) x(ij)/m + Sigma(n-m)(i=1) x(kj)) = (n-m+1)/n (n m) Sigma(n)(i=1) f(X-j).
引用
收藏
页数:10
相关论文
共 50 条