Fixed points and stability of functional equations in fuzzy ternary Banach algebras

被引:5
|
作者
Asgari, G. [1 ]
Cho, Y. J. [2 ,3 ]
Lee, Y. W. [4 ]
Gordji, M. Eshaghi [5 ]
机构
[1] Islamic Azad Univ, Dept Math, Aligoudarz Branch, Aligoudarz, Iran
[2] Gyeongsang Natl Univ, Dept Math Educ, Chinju 660701, South Korea
[3] Gyeongsang Natl Univ, RINS, Chinju 660701, South Korea
[4] Daejeon Univ, Dept Comp Hacking & Informat Secur, Taejon 300716, South Korea
[5] Semnan Univ, Dept Math, Semnan, Iran
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam-Rassias stability; Diaz and Margolis contraction theorem; fuzzy ternary Banach algebra; ternary algebras; functional equations; ASTERISK-HOMOMORPHISMS; DERIVATIONS;
D O I
10.1186/1029-242X-2013-166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using Diaz and Margolis fixed point theorem, we establish the generalized Hyers-Ulam-Rassias stability of the ternary homomorphisms and ternary derivations between fuzzy ternary Banach algebras associated to the following (m,n)-Cauchy-Jensen additive functional equation: (1 <= 1<...<im <= n 1 <= kj <= n k1ij,j is an element of{1,...,m})Sigma f(Sigma(m)(j=1) x(ij)/m + Sigma(n-m)(i=1) x(kj)) = (n-m+1)/n (n m) Sigma(n)(i=1) f(X-j).
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Nonexpansive mappings on Abelian Banach algebras and their fixed points
    W Fupinwong
    Fixed Point Theory and Applications, 2012
  • [33] Stability of ternary m-derivations on ternary Banach algebras
    Gordji, Madjid Eshaghi
    Keshavarz, Vahid
    Lee, Jung Rye
    Shin, Dong Yun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 21 (04) : 640 - 644
  • [34] Fuzzy stability of functional equations in n-variable fuzzy Banach spaces
    Shin, Dong Yun
    Park, Choonkil
    Aghjeubeh, Roghayeh Asadi
    Farhadabadi, Shahrokh
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 19 (01) : 186 - 196
  • [35] FIXED POINTS AND GENERALIZED STABILITY FOR FUNCTIONAL EQUATIONS IN ABSTRACT SPACES
    Cadariu, Liviu
    Radu, Viorel
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (03): : 463 - 473
  • [36] Fixed points and the stability of the linear functional equations in a single variable
    Cadariu, Liviu
    Manolescu, Laura
    arXiv, 2022,
  • [37] Fixed points and the stability of the linear functional equations in a single variable
    Cadariu, Liviu
    Manolescu, Laura
    CARPATHIAN JOURNAL OF MATHEMATICS, 2022, 38 (03) : 769 - 776
  • [38] STABILITY OF THE JENSEN TYPE FUNCTIONAL EQUATION IN BANACH ALGEBRAS: A FIXED POINT APPROACH
    Park, Choonkil
    Park, Won-Gil
    Lee, Jung Rye
    Rassias, Themistocles M.
    KOREAN JOURNAL OF MATHEMATICS, 2011, 19 (02): : 149 - 161
  • [39] On the Problem of the Uniqueness of Fixed Points and Solutions for Quadratic Fractional-Integral Equations on Banach Algebras
    Cichon, Kinga
    Cichon, Mieczyslaw
    Ciesielski, Maciej
    SYMMETRY-BASEL, 2024, 16 (11):
  • [40] Banach limit, fixed points and Ulam stability
    Janusz Brzdȩk
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116