Positive Solutions to Nonlinear Systems Involving Fully Nonlinear Fractional Operators

被引:0
|
作者
Pengcheng Niu
Wu Leyun
Xiaoxue Ji
机构
[1] Northwestern Polytechnical University Xi’an,Department of Applied Mathematics
关键词
35B09; 35A01; 35B53; 35J47; nonlinear fractional system; fully nonlinear fractional operator; decay at infinity; narrow region principle; direct method of moving planes; radial symmetry; nonexistence;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the following fractional system \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {_{G\left( {x,v\left( x \right),u\left( x \right),{G_\beta }\left( {v\left( x \right)} \right)} \right) = 0,}^{F\left( {x,u\left( x \right),v\left( x \right),{F_\alpha }\left( {u\left( x \right)} \right)} \right) = 0,}} \right.$$\end{document} where 0 < α, β < 2, 𝓕α and 𝓖β are the fully nonlinear fractional operators: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{array}{*{20}{c}} {{\mathcal{F}_\alpha }(u(x))}&{ = {C_{n,\alpha }}PV}&{\int_{{\mathbb{R}^n}} {\frac{{f(u(x) - u(y))}}{{|{{\left| {x - y} \right|}^{n + \alpha }}}}dy,} } \\ {{\mathcal{G}_\beta }(v(x))}&{ = {C_{n,\beta }}PV}&{\int_{{\mathbb{R}^n}} {\frac{{g(v(x) - v(y))}}{{{{\left| {x - y} \right|}^{n + \beta }}}}dy.} } \end{array}$$\end{document} A decay at infinity principle and a narrow region principle for solutions to the system are established. Based on these principles, we prove the radial symmetry and monotonicity of positive solutions to the system in the whole space and a unit ball respectively, and the nonexistence in a half space by generalizing the direct method of moving planes to the nonlinear system.
引用
收藏
页码:552 / 574
页数:22
相关论文
共 50 条
  • [41] Symmetric Properties for Choquard Equations Involving Fully Nonlinear Nonlocal Operators
    Wang, Pengyan
    Chen, Li
    Niu, Pengcheng
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 841 - 862
  • [42] Symmetric Properties for Choquard Equations Involving Fully Nonlinear Nonlocal Operators
    Pengyan Wang
    Li Chen
    Pengcheng Niu
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 841 - 862
  • [43] POSITIVE SOLUTIONS FOR NONLINEAR ELLIPTIC SYSTEMS
    Ben Dekhil, Adel
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2012,
  • [44] On the number of positive solutions of nonlinear systems
    Wang, HY
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) : 287 - 306
  • [45] Viscosity solutions of fully nonlinear parabolic systems
    Liu, WI
    Yang, Y
    Lu, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 281 (01) : 362 - 381
  • [46] MULTIPLICITY SOLUTIONS FOR FULLY NONLINEAR EQUATION INVOLVING NONLINEARITY WITH ZEROS
    Yu, Xiaohui
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (01) : 451 - 459
  • [47] Solutions of nonlinear equations in cones and positive linear operators
    Webb, J. R. L.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 82 : 420 - 436
  • [48] Symmetry properties for solutions of nonlocal equations involving nonlinear operators
    Fazly, Mostafa
    Sire, Yannick
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2019, 36 (02): : 523 - 543
  • [49] Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian
    Felmer, Patricio
    Quaas, Alexander
    Tan, Jinggang
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) : 1237 - 1262
  • [50] Positive Solutions for Coupled Nonlinear Fractional Differential Equations
    Liu, Wenning
    Yan, Xingjie
    Qi, Wei
    JOURNAL OF APPLIED MATHEMATICS, 2014,