Detection and classification of intracranial haemorrhage on CT images using a novel deep-learning algorithm

被引:0
|
作者
Ji Young Lee
Jong Soo Kim
Tae Yoon Kim
Young Soo Kim
机构
[1] Hanyang University Seoul Hospital,Department of Radiology, School of Medicine
[2] Hanyang University,Institute for Software Convergence
[3] Hanyang University Guri Hospital,Department of Radiology, College of Medicine
[4] Hanyang University Seoul Hospital,Department of Neurosurgery, School of Medicine
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A novel deep-learning algorithm for artificial neural networks (ANNs), completely different from the back-propagation method, was developed in a previous study. The purpose of this study was to assess the feasibility of using the algorithm for the detection of intracranial haemorrhage (ICH) and the classification of its subtypes, without employing the convolutional neural network (CNN). For the detection of ICH with the summation of all the computed tomography (CT) images for each case, the area under the ROC curve (AUC) was 0.859, and the sensitivity and the specificity were 78.0% and 80.0%, respectively. Regarding ICH localisation, CT images were divided into 10 subdivisions based on the intracranial height. With the subdivision of 41–50%, the best diagnostic performance for detecting ICH was obtained with AUC of 0.903, the sensitivity of 82.5%, and the specificity of 84.1%. For the classification of the ICH to subtypes, the accuracy rate for subarachnoid haemorrhage (SAH) was considerably excellent at 91.7%. This study revealed that our approach can greatly reduce the ICH diagnosis time in an actual emergency situation with a fairly good diagnostic performance.
引用
收藏
相关论文
共 50 条
  • [21] Accuracy and time efficiency of a novel deep learning algorithm for Intracranial Hemorrhage detection in CT Scans
    D'Angelo, Tommaso
    Bucolo, Giuseppe M.
    Kamareddine, Tarek
    Yel, Ibrahim
    Koch, Vitali
    Gruenewald, Leon D.
    Martin, Simon
    Alizadeh, Leona S.
    Mazziotti, Silvio
    Blandino, Alfredo
    Vogl, Thomas J.
    Booz, Christian
    RADIOLOGIA MEDICA, 2024, : 1499 - 1506
  • [22] A Deep-learning based Method for the Classification of the Cellular Images
    Vununu, Caleb
    Lee, Suk-Hwan
    Kwon, Ki-Ryong
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 3: BIOINFORMATICS, 2020, : 242 - 245
  • [23] Detection and Severity Classification of COVID-19 in CT Images Using Deep Learning
    Qiblawey, Yazan
    Tahir, Anas
    Chowdhury, Muhammad E. H.
    Khandakar, Amith
    Kiranyaz, Serkan
    Rahman, Tawsifur
    Ibtehaz, Nabil
    Mahmud, Sakib
    Maadeed, Somaya Al
    Musharavati, Farayi
    Ayari, Mohamed Arselene
    DIAGNOSTICS, 2021, 11 (05)
  • [24] Detection and Classification of Hysteroscopic Images Using Deep Learning
    Raimondo, Diego
    Raffone, Antonio
    Salucci, Paolo
    Raimondo, Ivano
    Capobianco, Giampiero
    Galatolo, Federico Andrea
    Cimino, Mario Giovanni Cosimo Antonio
    Travaglino, Antonio
    Maletta, Manuela
    Ferla, Stefano
    Virgilio, Agnese
    Neola, Daniele
    Casadio, Paolo
    Seracchioli, Renato
    CANCERS, 2024, 16 (07)
  • [25] A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique
    Saber, Abeer
    Sakr, Mohamed
    Abo-Seida, Osama M.
    Keshk, Arabi
    Chen, Huiling
    IEEE Access, 2021, 9 : 71194 - 71209
  • [26] A Novel Deep-Learning Model for Automatic Detection and Classification of Breast Cancer Using the Transfer-Learning Technique
    Saber, Abeer
    Sakr, Mohamed
    Abo-Seida, Osama M.
    Keshk, Arabi
    Chen, Huiling
    IEEE ACCESS, 2021, 9 : 71194 - 71209
  • [27] Intracranial Hemorrhage Detection in CT Scans using Deep Learning
    Lewick, Tomasz
    Kumar, Meera
    Hong, Raymond
    Wu, Wencen
    2020 IEEE SIXTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2020), 2020, : 170 - 173
  • [28] Classification of Intracranial Hemorrhage Subtypes Using Deep Learning on CT Scans
    Danilov, Gleb
    Kotik, Konstantin
    Negreeva, Anna
    Tsukanova, Tatiana
    Shifrin, Michael
    Zakharova, Natalya
    Batalov, Artem
    Pronin, Igor
    Potapov, Alexander
    IMPORTANCE OF HEALTH INFORMATICS IN PUBLIC HEALTH DURING A PANDEMIC, 2020, 272 : 370 - 373
  • [29] Deep-Learning Based Segmentation Algorithm for Defect Detection in Magnetic Particle Testing Images
    Ueda, Akira
    Lu, Huimin
    Kamiya, Tohru
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 235 - 238
  • [30] Automated detection and classification for early stage lung cancer on CT images using deep learning
    Nasrullah
    Sang, Jun
    Alam, Mohammad S.
    Xiang, Hong
    PATTERN RECOGNITION AND TRACKING XXX, 2019, 10995