Equivalence of Sharp Trudinger-Moser Inequalities in Lorentz-Sobolev Spaces

被引:0
|
作者
Hanli Tang
机构
[1] Beijing Normal University,School of Mathematical Sciences
来源
Potential Analysis | 2020年 / 53卷
关键词
Critical Trudinger-Moser inequality; Subcritical Trudinger-Moser inequalities; Lorentz-Sobolev spaces; Equivalence;
D O I
暂无
中图分类号
学科分类号
摘要
The critical and subcritical Trudinger-Moser inequalities in Lorentz Sobolev space have been studied by Cassani and Tarsi (Asymptot. Anal. 64(1-2):29–51, 2009), Lu and Tang (Adv. Nonlinear Stud. 16(3):581–601, 2016). In this paper, we will prove that these critical and subcritical Trudinger-Moser inequalities are actually equivalent and thus extend those equivalence results of Lam et al. (Rev. Mat. Iberoam 33(4):1219–1246, 2017) into Lorentz Sobolev spaces.
引用
收藏
页码:297 / 314
页数:17
相关论文
共 50 条
  • [11] Sharp convex Lorentz-Sobolev inequalities
    Ludwig, Monika
    Xiao, Jie
    Zhang, Gaoyong
    MATHEMATISCHE ANNALEN, 2011, 350 (01) : 169 - 197
  • [12] SHARP TRUDINGER-MOSER INEQUALITIES WITH HOMOGENEOUS WEIGHTS
    Nguyen Tuan Duy
    Le Trung Nghia
    Le Long Phi
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [13] Sharp Trudinger-Moser inequalities with monomial weights
    Nguyen Lam
    Nonlinear Differential Equations and Applications NoDEA, 2017, 24
  • [14] TRUDINGER-MOSER TYPE INEQUALITIES FOR WEIGHTED SOBOLEV SPACES INVOLVING FRACTIONAL DIMENSIONS
    De Oliveira, Jose Francisco
    Do O, Joao Marcos
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2813 - 2828
  • [15] Sharp threshold nonlinearity for maximizing the Trudinger-Moser inequalities
    Ibrahim, S.
    Masmoudi, N.
    Nakanishi, K.
    Sani, F.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (01)
  • [16] Some sharp inequalities related to Trudinger-Moser inequality
    de Souza, Manasses
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 467 (02) : 981 - 1012
  • [17] New results concerning Moser-type inequalities in Lorentz-Sobolev spaces
    Robert Černý
    Revista Matemática Complutense, 2016, 29 : 271 - 294
  • [18] New results concerning Moser-type inequalities in Lorentz-Sobolev spaces
    Cerny, Robert
    REVISTA MATEMATICA COMPLUTENSE, 2016, 29 (02): : 271 - 294
  • [19] Sharp affine Trudinger-Moser inequalities: A new argument
    Duy, Nguyen Tuan
    Lam, Nguyen
    Long Le, Phi
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (04): : 765 - 778
  • [20] Equivalence of critical and subcritical sharp Trudinger-Moser inequalities in fractional dimensions and extremal functions
    de Oliveira, Jose Francisco
    Marcos, Joao do O.
    REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (03) : 1073 - 1096